Melting enhancement of PCM in a finned tube latent heat thermal energy storage.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
07 Jul 2022
Historique:
received: 16 04 2022
accepted: 29 06 2022
entrez: 7 7 2022
pubmed: 8 7 2022
medline: 8 7 2022
Statut: epublish

Résumé

The current paper discusses the numerical simulation results of the NePCM melting process inside an annulus thermal storage system. The TES system consists of a wavy shell wall and a cylindrical tube equipped with three fins. The enthalpy-porosity method was utilized to address the transient behavior of the melting process, while the Galerkin FE technique was used to solve the system governing equations. The results were displayed for different inner tube positions (right-left-up and down), inner cylinder rotation angle (0 ≤ α ≤ 3π/2), and the nano-additives concentration (0 ≤ ϕ ≤ 0.04). The findings indicated that high values of nano-additives concentration (0.4), bigger values of tube rotation angle (3π/2), and location of the tube at the lower position accelerated the NePCM melting process.

Identifiants

pubmed: 35798795
doi: 10.1038/s41598-022-15797-0
pii: 10.1038/s41598-022-15797-0
pmc: PMC9262962
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

11521

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© 2022. The Author(s).

Références

Riahi, S., Jovet, Y., Saman, W. Y., Belusko, M. & Bruno, F. Sensible and latent heat energy storage systems for concentrated solar power plants, exergy efficiency comparison. Sol. Energy 180, 104–115 (2019).
doi: 10.1016/j.solener.2018.12.072
Qasem, N. A. A. et al. Effect of a rotating cylinder on convective flow, heat and entropy production of a 3D wavy enclosure filled by a phase change material. Appl. Therm. Eng. 11, 8818 (2022).
Abderrahmane, A., Hatami, M., & Younis, O. et al. Effect of double rotating cylinders on the MHD mixed convection and entropy generation of a 3D cubic enclosure filled by nano-PCM. Eur. Phys. J. Spec. Top. (2022).
Rathod, M. K. & Banerjee, J. Thermal stability of phase change materials used in latent heat energy storage systems: A review. Renew. Sustain. energy Rev. 18, 246–258 (2013).
doi: 10.1016/j.rser.2012.10.022
Mourad, A. et al. Recent advances on the applications of phase change materials for solar collectors, practical limitations, and challenges: A critical review. J. Energy Storage 49, 104186 (2022).
doi: 10.1016/j.est.2022.104186
Khan, M. M. A. et al. Evaluation of solar collector designs with integrated latent heat thermal energy storage: A review. Sol. Energy 166, 334–350 (2018).
doi: 10.1016/j.solener.2018.03.014
Soares, N., Costa, J. J., Gaspar, A. R. & Santos, P. Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency. Energy Build. 59, 82–103. https://doi.org/10.1016/j.enbuild.2012.12.042 (2013).
doi: 10.1016/j.enbuild.2012.12.042
Seddegh, S., Wang, X., Henderson, A. D. & Xing, Z. Solar domestic hot water systems using latent heat energy storage medium: A review. Renew. Sustain. energy Rev. 49, 517–533 (2015).
doi: 10.1016/j.rser.2015.04.147
Reddy, K. S., Mudgal, V. & Mallick, T. K. Review of latent heat thermal energy storage for improved material stability and effective load management. J. Energy Storage 15, 205–227 (2018).
doi: 10.1016/j.est.2017.11.005
Al-Abidi, A. A., Bin Mat, S., Sopian, K., Sulaiman, M. Y. & Lim, C. H. Review of thermal energy storage for air conditioning systems. Renew. Sustain. Energy Rev. 16(8), 5802–5819 (2012).
doi: 10.1016/j.rser.2012.05.030
Mardiana-Idayu, A. & Riffat, S. B. Review on heat recovery technologies for building applications. Renew. Sustain. Energy Rev. 16(2), 1241–1255 (2012).
doi: 10.1016/j.rser.2011.09.026
Mishra, L., Sinha, A. & Gupta, R. Recent developments in latent heat energy storage systems using phase change materials (PCMs)—a review. Green Build. Sustain. Eng. 1, 25–37 (2019).
doi: 10.1007/978-981-13-1202-1_2
Lakshmi Narasimhan, N. & Srinivasan, G. Analysis of a thermal storage unit containing multiple phase change materials dispersed with high conductivity particles. J. Mech. Sci. Technol. 32(1), 373–380. https://doi.org/10.1007/s12206-017-1237-3 (2018).
doi: 10.1007/s12206-017-1237-3
Abdelgaied, M. & Kabeel, A. E. Performance improvement of pyramid solar distillers using a novel combination of absorber surface coated with CuO nano black paint, reflective mirrors, and PCM with pin fins. Renew. Energy 180, 494–501. https://doi.org/10.1016/j.renene.2021.08.071 (2021).
doi: 10.1016/j.renene.2021.08.071
Khdair, A. I., Abu Rumman, G. & Basha, M. Developing building enhanced with PCM to reduce energy consumption. J. Build. Eng. 48, 3923. https://doi.org/10.1016/j.jobe.2021.103923 (2022).
doi: 10.1016/j.jobe.2021.103923
Kurnia, J. C. et al. Optimization of an innovative hybrid thermal energy storage with phase change material (PCM) wall insulator utilizing Taguchi method. J. Energy Storage 49, 104067. https://doi.org/10.1016/j.est.2022.104067 (2022).
doi: 10.1016/j.est.2022.104067
Shamsi, H., Boroushaki, M. & Geraei, H. Performance evaluation and optimization of encapsulated cascade PCM thermal storage. J. Energy storage 11, 64–75 (2017).
doi: 10.1016/j.est.2017.02.003
Sharaf, M., Huzayyin, A. S. & Yousef, M. S. Performance enhancement of photovoltaic cells using phase change material (PCM) in winter. Alex. Eng. J. 61(6), 4229–4239. https://doi.org/10.1016/j.aej.2021.09.044 (2022).
doi: 10.1016/j.aej.2021.09.044
Saha, S., Ruslan, A. R. M., Monjur Morshed, A. K. M. & Hasanuzzaman, M. Global prospects and challenges of latent heat thermal energy storage: A review. Clean Technol. Environ. Policy 23(2), 531–559 (2021).
doi: 10.1007/s10098-020-01997-7
Costa, S. C. & Kenisarin, M. A review of metallic materials for latent heat thermal energy storage: Thermophysical properties, applications, and challenges. Renew. Sustain. Energy Rev. 154, 111812. https://doi.org/10.1016/j.rser.2021.111812 (2022).
doi: 10.1016/j.rser.2021.111812
Nawsud, Z. A., Altouni, A., Akhijahani, H. S. & Kargarsharifabad, H. A comprehensive review on the use of nano-fluids and nano-PCM in parabolic trough solar collectors (PTC). Sustain. Energy Technol. Assess 51, 101889 (2022).
Arshad, A., Jabbal, M., Yan, Y. & Darkwa, J. The micro-/nano-PCMs for thermal energy storage systems: A state of art review. Int. J. Energy Res. 43(11), 5572–5620 (2019).
doi: 10.1002/er.4550
Yang, X. et al. Thermal performance of a shell-and-tube latent heat thermal energy storage unit: Role of annular fins. Appl. Energy 202, 558–570 (2017).
doi: 10.1016/j.apenergy.2017.05.007
He, M. et al. Preparation, thermal characterization and examination of phase change materials (PCMs) enhanced by carbon-based nanoparticles for solar thermal energy storage. J. Energy Storage 25, 100874 (2019).
doi: 10.1016/j.est.2019.100874
Chu, Y.-M., Hajizadeh, M. R., Li, Z. & Bach, Q.-V. Investigation of nano powders influence on melting process within a storage unit. J. Mol. Liq. 318, 114321 (2020).
doi: 10.1016/j.molliq.2020.114321
Soliman, A. S., Zhu, S., Xu, L., Dong, J. & Cheng, P. Efficient waste heat recovery system for diesel engines using nano-enhanced phase change materials. Case Stud. Therm. Eng. 28, 1390. https://doi.org/10.1016/j.csite.2021.101390 (2021).
doi: 10.1016/j.csite.2021.101390
Ghalambaz, M., Mehryan, S. A. M., Tahmasebi, A. & Hajjar, A. Non-Newtonian phase-change heat transfer of nano-enhanced octadecane with mesoporous silica particles in a tilted enclosure using a deformed mesh technique. Appl. Math. Model. 85, 318–337. https://doi.org/10.1016/j.apm.2020.03.046 (2020).
doi: 10.1016/j.apm.2020.03.046
Al-Waeli, A. H. A. et al. Modeling and experimental validation of a PVT system using nanofluid coolant and nano-PCM. Sol. Energy 177, 178–191 (2019).
doi: 10.1016/j.solener.2018.11.016
Kazemian, A., Khatibi, M., Reza Maadi, S. & Ma, T. Performance optimization of a nanofluid-based photovoltaic thermal system integrated with nano-enhanced phase change material. Appl. Energy 295, 6859. https://doi.org/10.1016/j.apenergy.2021.116859 (2021).
doi: 10.1016/j.apenergy.2021.116859
Fan, L.-W. et al. Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials. Appl. Energy 110, 163–172 (2013).
doi: 10.1016/j.apenergy.2013.04.043
Nada, S. A., El-Nagar, D. H. & Hussein, H. M. S. Improving the thermal regulation and efficiency enhancement of PCM-Integrated PV modules using nano particles. Energy Convers. Manag. 166, 735–743 (2018).
doi: 10.1016/j.enconman.2018.04.035
Singh, R. P., Sze, J. Y., Kaushik, S. C., Rakshit, D. & Romagnoli, A. Thermal performance enhancement of eutectic PCM laden with functionalised graphene nanoplatelets for an efficient solar absorption cooling storage system. J. Energy Storage 33, 102092 (2021).
doi: 10.1016/j.est.2020.102092
Kashani, S., Ranjbar, A. A., Abdollahzadeh, M. & Sebti, S. Solidification of nano-enhanced phase change material (NEPCM) in a wavy cavity. Heat Mass Transf. 48(7), 1155–1166 (2012).
doi: 10.1007/s00231-012-0965-2
Abdollahzadeh, M. & Esmaeilpour, M. Enhancement of phase change material (PCM) based latent heat storage system with nano fluid and wavy surface. Int. J. Heat Mass Transf. 80, 376–385. https://doi.org/10.1016/j.ijheatmasstransfer.2014.09.007 (2015).
doi: 10.1016/j.ijheatmasstransfer.2014.09.007
Shahsavar, A., Al-Rashed, A. A. A. A., Entezari, S. & Sardari, P. T. Melting and solidification characteristics of a double-pipe latent heat storage system with sinusoidal wavy channels embedded in a porous medium. Energy 171, 751–769. https://doi.org/10.1016/j.energy.2019.01.045 (2019).
doi: 10.1016/j.energy.2019.01.045
Alizadeh, M., Nabizadeh, A., Fazlollahtabar, A. & Ganji, D. D. An optimization study of solidification procedure in a wavy-wall storage unit considering the impacts of NEPCM and curved fin. Int. Commun. Heat Mass Transf. 124, 105249 (2021).
doi: 10.1016/j.icheatmasstransfer.2021.105249
Ghachem, K. et al. Impacts of rotating surface and area expansion during nanofluid convection on phase change dynamics for PCM packed bed installed cylinder. Alexandria Eng. J. 61(6), 4159–4173 (2022).
doi: 10.1016/j.aej.2021.09.034
Chamkha, A. J., & Selimefendigil, F. MHD mixed convection of nanofluid due to an inner rotating cylinder in a 3D enclosure with a phase change material. Int. J. Numer. Methods Heat Fluid Flow.
Raizah, Z. & Aly, A. M. Double-diffusive convection of a rotating circular cylinder in a porous cavity suspended by nano-encapsulated phase change materials. Case Stud. Therm. Eng. 24, 100864 (2021).
doi: 10.1016/j.csite.2021.100864
Mehryan, S. A. M. et al. Latent heat phase change heat transfer of a nanoliquid with nano-encapsulated phase change materials in a wavy-wall enclosure with an active rotating cylinder. Sustainability 13(5), 2590 (2021).
doi: 10.3390/su13052590
Selimefendigil, F. & Öztop, H. F. Mixed convection in a PCM filled cavity under the influence of a rotating cylinder. Sol. Energy 200(March), 61–75. https://doi.org/10.1016/j.solener.2019.05.062 (2020).
doi: 10.1016/j.solener.2019.05.062
Al-Kouz, W. et al. Effect of a rotating cylinder on the 3D MHD mixed convection in a phase change material filled cubic enclosure. Sustain. Energy Technol. Assessments 51, 101879. https://doi.org/10.1016/j.seta.2021.101879 (2022).
doi: 10.1016/j.seta.2021.101879
Sadr, A. N. et al. Simulation of mixed-convection of water and nano-encapsulated phase change material inside a square cavity with a rotating hot cylinder. J. Energy Storage 10, 3606. https://doi.org/10.1016/j.est.2021.103606 (2021).
doi: 10.1016/j.est.2021.103606
Elmaazouzi, Z., Laasri, I. A., Gounni, A., Alami, M. E. & Bennouna, E. G. Enhanced thermal performance of finned latent heat thermal energy storage system: fin parameters optimization. J. Energy Storage 43, 103116 (2021).
doi: 10.1016/j.est.2021.103116
Ahmed, S. E. et al. Enhanced heat transfer for NePCM-melting-based thermal energy of finned heat pipe. Nanomaterials 12(1), 2. https://doi.org/10.3390/nano12010129 (2022).
doi: 10.3390/nano12010129
Abderrahmane, A. et al. MHD hybrid nanofluid mixed convection heat transfer and entropy generation in a 3-D triangular porous cavity with zigzag wall and rotating cylinder. Mathematics 10, 769. https://doi.org/10.3390/math10050769 (2022).
doi: 10.3390/math10050769
Arasu, A. V. & Mujumdar, A. S. Numerical study on melting of paraffin wax with Al2O3 in a square enclosure. Int. Commun. Heat Mass Transf. 39(1), 8–16. https://doi.org/10.1016/j.icheatmasstransfer.2011.09.013 (2012).
doi: 10.1016/j.icheatmasstransfer.2011.09.013

Auteurs

Sameh Ahmed (S)

College of Science, King Khalid University, Abha, 61413, Saudi Arabia.
Department of Mathematics, Faculty of Science, South Valley University, Qena, 83523, Egypt.

Aissa Abderrahmane (A)

Laboratoire de Physique Quantique de La Matière et Modélisation Mathématique (LPQ3M), University of Mascara, Algeria, Algeria.

Abdulkafi Mohammed Saeed (AM)

Department of Mathematics, College of Science, Qassim University, Buraydah, Kingdom of Saudi Arabia.

Kamel Guedri (K)

Mechanical Engineering Department, College of Engineering and Islamic Architecture, Umm Al-Qura University, P.O. Box 5555, Makkah, 21955, Saudi Arabia.

Abed Mourad (A)

Laboratoire de Physique Quantique de La Matière et Modélisation Mathématique (LPQ3M), University of Mascara, Algeria, Algeria.

Obai Younis (O)

College of Engineering at Wadi Addwaser, Mechanical Engineering Department, Prince Sattam Bin Abdulaziz University, WadiAddwaser, Saudi Arabia.

Thongchai Botmart (T)

Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand. thongbo@kku.ac.th.

Nehad Ali Shah (NA)

Department of Mechanical Engineering, Sejong University, Seoul, 05006, South Korea.

Classifications MeSH