Highly conducting single-molecule topological insulators based on mono- and di-radical cations.
Journal
Nature chemistry
ISSN: 1755-4349
Titre abrégé: Nat Chem
Pays: England
ID NLM: 101499734
Informations de publication
Date de publication:
Sep 2022
Sep 2022
Historique:
received:
18
06
2021
accepted:
18
05
2022
pubmed:
8
7
2022
medline:
8
7
2022
entrez:
7
7
2022
Statut:
ppublish
Résumé
Single-molecule topological insulators are promising candidates as conducting wires over nanometre length scales. A key advantage is their ability to exhibit quasi-metallic transport, in contrast to conjugated molecular wires which typically exhibit a low conductance that decays as the wire length increases. Here, we study a family of oligophenylene-bridged bis(triarylamines) with tunable and stable mono- or di-radicaloid character. These wires can undergo one- and two-electron chemical oxidations to the corresponding mono-cation and di-cation, respectively. We show that the oxidized wires exhibit reversed conductance decay with increasing length, consistent with the expectation for Su-Schrieffer-Heeger-type one-dimensional topological insulators. The 2.6-nm-long di-cation reported here displays a conductance greater than 0.1G
Identifiants
pubmed: 35798950
doi: 10.1038/s41557-022-00978-1
pii: 10.1038/s41557-022-00978-1
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1061-1067Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Davis, W. B., Svec, W. A., Ratner, M. A. & Wasielewski, M. R. Molecular-wire behaviour in p-phenylenevinylene oligomers. Nature 396, 60–63 (1998).
doi: 10.1038/23912
Nitzan, A. & Ratner, M. A. Electron transport in molecular wire junctions. Science 300, 1384–1389 (2003).
pubmed: 12775831
doi: 10.1126/science.1081572
Choi, S. H., Kim, B. & Frisbie, C. D. Electrical resistance of long conjugated molecular wires. Science 320, 1482–1486 (2008).
doi: 10.1126/science.1156538
Lafferentz, L. et al. Conductance of a single conjugated polymer as a continuous function of its length. Science 323, 1193–1197 (2009).
pubmed: 19251624
doi: 10.1126/science.1168255
Sedghi, G. et al. Long-range electron tunnelling in oligo-porphyrin molecular wires. Nat. Nano. 6, 517–523 (2011).
doi: 10.1038/nnano.2011.111
Nacci, C. et al. Conductance of a single flexible molecular wire composed of alternating donor and acceptor units. Nat. Commun. 6, 7397 (2015).
Zhou, Y. et al. Quantum length dependence of conductance in oligomers: first-principles calculations. Phys. Rev. B 75, 245407 (2007).
doi: 10.1103/PhysRevB.75.245407
Reimers, J. & Hush, N. Electron transfer and energy transfer through bridged systems. I. Formalism. Chem. Phys. 134, 323–354 (1989).
doi: 10.1016/0301-0104(89)87167-8
Joachim, C. Ligand-length dependence of the intramolecular electron transfer through-bond coupling parameter. Chem. Phys. 116, 339–349 (1987).
doi: 10.1016/0301-0104(87)80203-3
Tsuji, Y., Movassagh, R., Datta, S. & Hoffmann, R. Exponential attenuation of through-bond transmission in a polyene: theory and potential realizations. ACS Nano 9, 11109–11120 (2015).
pubmed: 26390251
doi: 10.1021/acsnano.5b04615
Li, S., Gan, C. K., Son, Y.-W., Feng, Y. P. & Quek, S. Y. Anomalous length-independent frontier resonant transmission peaks in armchair graphene nanoribbon molecular wires. Carbon 76, 285–291 (2014).
doi: 10.1016/j.carbon.2014.04.079
Gil-Guerrero, S., Peña-Gallego, Á., Ramos-Berdullas, N., Martin Pendas, A. & Mandado, M. Assessing the reversed exponential decay of the electrical conductance in molecular wires: the undeniable effect of static electron correlation. Nano Lett. 19, 7394–7399 (2019).
pubmed: 31525054
doi: 10.1021/acs.nanolett.9b03063
Heeger, A. J., Kivelson, S., Schrieffer, J. & Su, W.-P. Solitons in conducting polymers. Rev. Mod. Phys. 60, 781–850 (1988).
doi: 10.1103/RevModPhys.60.781
Cirera, B. et al. Tailoring topological order and π-conjugation to engineer quasi-metallic polymers. Nat. Nano. 15, 437–443 (2020).
doi: 10.1038/s41565-020-0668-7
Su, W. P., Schrieffer, J. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979).
doi: 10.1103/PhysRevLett.42.1698
Stuyver, T., Zeng, T., Tsuji, Y., Geerlings, P. & De Proft, F. Diradical character as a guiding principle for the insightful design of molecular nanowires with an increasing conductance with length. Nano Lett. 18, 7298–7304 (2018).
pubmed: 30346793
doi: 10.1021/acs.nanolett.8b03503
Hernangómez-Pérez, D., Gunasekaran, S., Venkataraman, L. & Evers, F. Solitonics with polyacetylenes. Nano Lett. 20, 2615–2619 (2020).
pubmed: 32125870
doi: 10.1021/acs.nanolett.0c00136
Gunasekaran, S. et al. Near length-independent conductance in polymethine molecular wires. Nano Lett. 18, 6387–6391 (2018).
pubmed: 30187756
doi: 10.1021/acs.nanolett.8b02743
Zang, Y. et al. Cumulene wires display increasing conductance with increasing length. Nano Lett. 20, 8415–8419 (2020).
pubmed: 33095021
doi: 10.1021/acs.nanolett.0c03794
Xu, W. et al. Unusual length dependence of the conductance in cumulene molecular wires. Angew. Chem. Int. Ed. 58, 8378–8382 (2019).
doi: 10.1002/anie.201901228
Leary, E. et al. Bias-driven conductance increase with length in porphyrin tapes. J. Am. Chem. Soc. 140, 12877–12883 (2018).
pubmed: 30207150
doi: 10.1021/jacs.8b06338
Meier, E. J., An, F. A. & Gadway, B. Observation of the topological soliton state in the Su–Schrieffer–Heeger model. Nat. Commun. 7, 13986 (2016).
pubmed: 28008924
pmcid: 5196433
doi: 10.1038/ncomms13986
Montgomery, L. K., Huffman, J. C., Jurczak, E. A. & Grendze, M. P. The molecular structures of Thiele’s and Chichibabin’s hydrocarbons. J. Am. Chem. Soc. 108, 6004–6011 (1986).
pubmed: 22175364
doi: 10.1021/ja00279a056
Su, Y. et al. Tuning ground states of bis(triarylamine) dications: from a closed‐shell singlet to a diradicaloid with an excited triplet state. Angew. Chem. Int. Ed. 126, 2901–2905 (2014).
doi: 10.1002/ange.201309458
Heeger, A. J. Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel lecture). Angew. Chem. Int. Ed. 40, 2591–2611 (2001).
doi: 10.1002/1521-3773(20010716)40:14<2591::AID-ANIE2591>3.0.CO;2-0
Joubert-Doriol, L. & Izmaylov, A. F. Molecular “topological insulators”: a case study of electron transfer in the bis(methylene) adamantyl carbocation. Chem. Comm. 53, 7365–7368 (2017).
pubmed: 28603800
doi: 10.1039/C7CC02275A
Lambert, C. & Nöll, G. The class II/III transition in triarylamine redox systems. J. Am. Chem. Soc. 121, 8434–8442 (1999).
doi: 10.1021/ja991264s
Low, P. J. et al. Crystal, molecular and electronic structure of N,N′‐diphenyl‐N,N′‐bis(2,4‐dimethylphenyl)‐(1,1′‐biphenyl)‐4,4′‐diamine and the corresponding radical cation. Chem. Eur. J. 10, 83–91 (2004).
pubmed: 14695553
doi: 10.1002/chem.200305200
Xu, B. & Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221–1223 (2003).
pubmed: 12947193
doi: 10.1126/science.1087481
Venkataraman, L. et al. Single-molecule circuits with well-defined molecular conductance. Nano Lett. 6, 458–462 (2006).
pubmed: 16522042
doi: 10.1021/nl052373+
Park, Y. S. et al. Frustrated rotations in single-molecule junctions. J. Am. Chem. Soc. 131, 10820–10821 (2009).
pubmed: 19722660
doi: 10.1021/ja903731m
Zang, Y. et al. Electronically transparent Au–N bonds for molecular junctions. J. Am. Chem. Soc. 139, 14845–14848 (2017).
pubmed: 28981277
doi: 10.1021/jacs.7b08370
Low, J. Z. et al. The environment-dependent behavior of the Blatter radical at the metal–molecule interface. Nano Lett. 19, 2543–2548 (2019).
pubmed: 30884240
doi: 10.1021/acs.nanolett.9b00275
Lu, Q. et al. From tunneling to hopping: a comprehensive investigation of charge transport mechanism in molecular junctions based on oligo (p-phenylene ethynylene)s. ACS Nano 3, 3861–3868 (2009).
pubmed: 19916506
doi: 10.1021/nn9012687
Fatemi, V., Kamenetska, M., Neaton, J. & Venkataraman, L. Environmental control of single-molecule junction transport. Nano Lett. 11, 1988–1992 (2011).
pubmed: 21500833
doi: 10.1021/nl200324e
Choi, B. et al. Solvent-dependent conductance decay constants in single cluster junctions. Chem. Sci. 7, 2701–2705 (2016).
pubmed: 28660043
pmcid: 5477014
doi: 10.1039/C5SC02595H
Capozzi, B. et al. Tunable charge transport in single-molecule junctions via electrolytic gating. Nano Lett. 14, 1400–1404 (2014).
pubmed: 24490721
doi: 10.1021/nl404459q
Delaney, P., Nolan, M. & Greer, J. Symmetry, delocalization, and molecular conductance. J. Chem. Phys. 122, 044710 (2005).
doi: 10.1063/1.1836754
Blum, V. et al. Ab initio molecular simulations with numeric atom-centered orbitals. Comp. Phys. Comm. 180, 2175–2196 (2009).
doi: 10.1016/j.cpc.2009.06.022
Arnold, A., Weigend, F. & Evers, F. Quantum chemistry calculations for molecules coupled to reservoirs: formalism, implementation, and application to benzenedithiol. J. Chem. Phys. 126, 174101 (2007).
pubmed: 17492851
doi: 10.1063/1.2716664
Bagrets, A. Spin-polarized electron transport across metal–organic molecules: a density functional theory approach. J. Chem. Theory Comp. 9, 2801–2815 (2013).
doi: 10.1021/ct4000263
Quek, S. Y. et al. Amine−gold linked single-molecule circuits: experiment and theory. Nano Lett. 7, 3477–3482 (2007).
pubmed: 17900162
doi: 10.1021/nl072058i
Evers, F., Korytár, R., Tewari, S. & van Ruitenbeek, J. M. Advances and challenges in single-molecule electron transport. Rev. Mod. Phys. 92, 035001 (2020).
doi: 10.1103/RevModPhys.92.035001
Klausen, R. S. et al. Evaluating atomic components in fluorene wires. Chem. Sci. 5, 1561–1564 (2014).
doi: 10.1039/c4sc00064a
Yoshizawa, K. An orbital rule for electron transport in molecules. Acc. Chem. Res. 45, 1612–1621 (2012).
pubmed: 22698647
doi: 10.1021/ar300075f
Garner, M. H., Bro-Jørgensen, W., Pedersen, P. D. & Solomon, G. C. Reverse bond-length alternation in cumulenes: candidates for increasing electronic transmission with length. J. Phys. Chem. C 122, 26777–26789 (2018).
doi: 10.1021/acs.jpcc.8b05661
Gil-Guerrero, S., Ramos-Berdullas, N., Pendás, Á. M., Francisco, E. & Mandado, M. Anti-ohmic single molecule electron transport: is it feasible? Nano. Adv. 1, 1901–1913 (2019).
doi: 10.1039/C8NA00384J
Asmar, M. M., Sheehy, D. E. & Vekhter, I. Topological phases of topological-insulator thin films. Phys. Rev. B 97, 075419 (2018).
doi: 10.1103/PhysRevB.97.075419
Brédas, J.-L., Chance, R. & Silbey, R. Comparative theoretical study of the doping of conjugated polymers: polarons in polyacetylene and polyparaphenylene. Phys. Rev. B 26, 5843–5854 (1982).
doi: 10.1103/PhysRevB.26.5843
Madrid, P. B., Polgar, W. E., Toll, L. & Tanga, M. J. Synthesis and antitubercular activity of phenothiazines with reduced binding to dopamine and serotonin receptors. Bioorg. Med. Chem. Lett. 17, 3014–3017 (2007).
pubmed: 17407813
doi: 10.1016/j.bmcl.2007.03.064
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
pubmed: 10062328
doi: 10.1103/PhysRevLett.77.3865
Lenthe, E. V., Baerends, E.-J. & Snijders, J. G. Relativistic regular two‐component hamiltonians. J. Chem. Phys. 99, 4597–4610 (1993).
doi: 10.1063/1.466059
Wilhelm, J., Walz, M., Stendel, M., Bagrets, A. & Evers, F. Ab initio simulations of scanning-tunneling-microscope images with embedding techniques and application to C
pubmed: 23450169
doi: 10.1039/c3cp44286a
Balasubramani, S. G. et al. TURBOMOLE: modular program suite for ab initio quantum-chemical and condensed-matter simulations. J. Chem. Phys. 152, 184107 (2020).
pubmed: 32414256
pmcid: 7228783
doi: 10.1063/5.0004635