Highly conducting single-molecule topological insulators based on mono- and di-radical cations.


Journal

Nature chemistry
ISSN: 1755-4349
Titre abrégé: Nat Chem
Pays: England
ID NLM: 101499734

Informations de publication

Date de publication:
Sep 2022
Historique:
received: 18 06 2021
accepted: 18 05 2022
pubmed: 8 7 2022
medline: 8 7 2022
entrez: 7 7 2022
Statut: ppublish

Résumé

Single-molecule topological insulators are promising candidates as conducting wires over nanometre length scales. A key advantage is their ability to exhibit quasi-metallic transport, in contrast to conjugated molecular wires which typically exhibit a low conductance that decays as the wire length increases. Here, we study a family of oligophenylene-bridged bis(triarylamines) with tunable and stable mono- or di-radicaloid character. These wires can undergo one- and two-electron chemical oxidations to the corresponding mono-cation and di-cation, respectively. We show that the oxidized wires exhibit reversed conductance decay with increasing length, consistent with the expectation for Su-Schrieffer-Heeger-type one-dimensional topological insulators. The 2.6-nm-long di-cation reported here displays a conductance greater than 0.1G

Identifiants

pubmed: 35798950
doi: 10.1038/s41557-022-00978-1
pii: 10.1038/s41557-022-00978-1
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1061-1067

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Davis, W. B., Svec, W. A., Ratner, M. A. & Wasielewski, M. R. Molecular-wire behaviour in p-phenylenevinylene oligomers. Nature 396, 60–63 (1998).
doi: 10.1038/23912
Nitzan, A. & Ratner, M. A. Electron transport in molecular wire junctions. Science 300, 1384–1389 (2003).
pubmed: 12775831 doi: 10.1126/science.1081572
Choi, S. H., Kim, B. & Frisbie, C. D. Electrical resistance of long conjugated molecular wires. Science 320, 1482–1486 (2008).
doi: 10.1126/science.1156538
Lafferentz, L. et al. Conductance of a single conjugated polymer as a continuous function of its length. Science 323, 1193–1197 (2009).
pubmed: 19251624 doi: 10.1126/science.1168255
Sedghi, G. et al. Long-range electron tunnelling in oligo-porphyrin molecular wires. Nat. Nano. 6, 517–523 (2011).
doi: 10.1038/nnano.2011.111
Nacci, C. et al. Conductance of a single flexible molecular wire composed of alternating donor and acceptor units. Nat. Commun. 6, 7397 (2015).
Zhou, Y. et al. Quantum length dependence of conductance in oligomers: first-principles calculations. Phys. Rev. B 75, 245407 (2007).
doi: 10.1103/PhysRevB.75.245407
Reimers, J. & Hush, N. Electron transfer and energy transfer through bridged systems. I. Formalism. Chem. Phys. 134, 323–354 (1989).
doi: 10.1016/0301-0104(89)87167-8
Joachim, C. Ligand-length dependence of the intramolecular electron transfer through-bond coupling parameter. Chem. Phys. 116, 339–349 (1987).
doi: 10.1016/0301-0104(87)80203-3
Tsuji, Y., Movassagh, R., Datta, S. & Hoffmann, R. Exponential attenuation of through-bond transmission in a polyene: theory and potential realizations. ACS Nano 9, 11109–11120 (2015).
pubmed: 26390251 doi: 10.1021/acsnano.5b04615
Li, S., Gan, C. K., Son, Y.-W., Feng, Y. P. & Quek, S. Y. Anomalous length-independent frontier resonant transmission peaks in armchair graphene nanoribbon molecular wires. Carbon 76, 285–291 (2014).
doi: 10.1016/j.carbon.2014.04.079
Gil-Guerrero, S., Peña-Gallego, Á., Ramos-Berdullas, N., Martin Pendas, A. & Mandado, M. Assessing the reversed exponential decay of the electrical conductance in molecular wires: the undeniable effect of static electron correlation. Nano Lett. 19, 7394–7399 (2019).
pubmed: 31525054 doi: 10.1021/acs.nanolett.9b03063
Heeger, A. J., Kivelson, S., Schrieffer, J. & Su, W.-P. Solitons in conducting polymers. Rev. Mod. Phys. 60, 781–850 (1988).
doi: 10.1103/RevModPhys.60.781
Cirera, B. et al. Tailoring topological order and π-conjugation to engineer quasi-metallic polymers. Nat. Nano. 15, 437–443 (2020).
doi: 10.1038/s41565-020-0668-7
Su, W. P., Schrieffer, J. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979).
doi: 10.1103/PhysRevLett.42.1698
Stuyver, T., Zeng, T., Tsuji, Y., Geerlings, P. & De Proft, F. Diradical character as a guiding principle for the insightful design of molecular nanowires with an increasing conductance with length. Nano Lett. 18, 7298–7304 (2018).
pubmed: 30346793 doi: 10.1021/acs.nanolett.8b03503
Hernangómez-Pérez, D., Gunasekaran, S., Venkataraman, L. & Evers, F. Solitonics with polyacetylenes. Nano Lett. 20, 2615–2619 (2020).
pubmed: 32125870 doi: 10.1021/acs.nanolett.0c00136
Gunasekaran, S. et al. Near length-independent conductance in polymethine molecular wires. Nano Lett. 18, 6387–6391 (2018).
pubmed: 30187756 doi: 10.1021/acs.nanolett.8b02743
Zang, Y. et al. Cumulene wires display increasing conductance with increasing length. Nano Lett. 20, 8415–8419 (2020).
pubmed: 33095021 doi: 10.1021/acs.nanolett.0c03794
Xu, W. et al. Unusual length dependence of the conductance in cumulene molecular wires. Angew. Chem. Int. Ed. 58, 8378–8382 (2019).
doi: 10.1002/anie.201901228
Leary, E. et al. Bias-driven conductance increase with length in porphyrin tapes. J. Am. Chem. Soc. 140, 12877–12883 (2018).
pubmed: 30207150 doi: 10.1021/jacs.8b06338
Meier, E. J., An, F. A. & Gadway, B. Observation of the topological soliton state in the Su–Schrieffer–Heeger model. Nat. Commun. 7, 13986 (2016).
pubmed: 28008924 pmcid: 5196433 doi: 10.1038/ncomms13986
Montgomery, L. K., Huffman, J. C., Jurczak, E. A. & Grendze, M. P. The molecular structures of Thiele’s and Chichibabin’s hydrocarbons. J. Am. Chem. Soc. 108, 6004–6011 (1986).
pubmed: 22175364 doi: 10.1021/ja00279a056
Su, Y. et al. Tuning ground states of bis(triarylamine) dications: from a closed‐shell singlet to a diradicaloid with an excited triplet state. Angew. Chem. Int. Ed. 126, 2901–2905 (2014).
doi: 10.1002/ange.201309458
Heeger, A. J. Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel lecture). Angew. Chem. Int. Ed. 40, 2591–2611 (2001).
doi: 10.1002/1521-3773(20010716)40:14<2591::AID-ANIE2591>3.0.CO;2-0
Joubert-Doriol, L. & Izmaylov, A. F. Molecular “topological insulators”: a case study of electron transfer in the bis(methylene) adamantyl carbocation. Chem. Comm. 53, 7365–7368 (2017).
pubmed: 28603800 doi: 10.1039/C7CC02275A
Lambert, C. & Nöll, G. The class II/III transition in triarylamine redox systems. J. Am. Chem. Soc. 121, 8434–8442 (1999).
doi: 10.1021/ja991264s
Low, P. J. et al. Crystal, molecular and electronic structure of N,N′‐diphenyl‐N,N′‐bis(2,4‐dimethylphenyl)‐(1,1′‐biphenyl)‐4,4′‐diamine and the corresponding radical cation. Chem. Eur. J. 10, 83–91 (2004).
pubmed: 14695553 doi: 10.1002/chem.200305200
Xu, B. & Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221–1223 (2003).
pubmed: 12947193 doi: 10.1126/science.1087481
Venkataraman, L. et al. Single-molecule circuits with well-defined molecular conductance. Nano Lett. 6, 458–462 (2006).
pubmed: 16522042 doi: 10.1021/nl052373+
Park, Y. S. et al. Frustrated rotations in single-molecule junctions. J. Am. Chem. Soc. 131, 10820–10821 (2009).
pubmed: 19722660 doi: 10.1021/ja903731m
Zang, Y. et al. Electronically transparent Au–N bonds for molecular junctions. J. Am. Chem. Soc. 139, 14845–14848 (2017).
pubmed: 28981277 doi: 10.1021/jacs.7b08370
Low, J. Z. et al. The environment-dependent behavior of the Blatter radical at the metal–molecule interface. Nano Lett. 19, 2543–2548 (2019).
pubmed: 30884240 doi: 10.1021/acs.nanolett.9b00275
Lu, Q. et al. From tunneling to hopping: a comprehensive investigation of charge transport mechanism in molecular junctions based on oligo (p-phenylene ethynylene)s. ACS Nano 3, 3861–3868 (2009).
pubmed: 19916506 doi: 10.1021/nn9012687
Fatemi, V., Kamenetska, M., Neaton, J. & Venkataraman, L. Environmental control of single-molecule junction transport. Nano Lett. 11, 1988–1992 (2011).
pubmed: 21500833 doi: 10.1021/nl200324e
Choi, B. et al. Solvent-dependent conductance decay constants in single cluster junctions. Chem. Sci. 7, 2701–2705 (2016).
pubmed: 28660043 pmcid: 5477014 doi: 10.1039/C5SC02595H
Capozzi, B. et al. Tunable charge transport in single-molecule junctions via electrolytic gating. Nano Lett. 14, 1400–1404 (2014).
pubmed: 24490721 doi: 10.1021/nl404459q
Delaney, P., Nolan, M. & Greer, J. Symmetry, delocalization, and molecular conductance. J. Chem. Phys. 122, 044710 (2005).
doi: 10.1063/1.1836754
Blum, V. et al. Ab initio molecular simulations with numeric atom-centered orbitals. Comp. Phys. Comm. 180, 2175–2196 (2009).
doi: 10.1016/j.cpc.2009.06.022
Arnold, A., Weigend, F. & Evers, F. Quantum chemistry calculations for molecules coupled to reservoirs: formalism, implementation, and application to benzenedithiol. J. Chem. Phys. 126, 174101 (2007).
pubmed: 17492851 doi: 10.1063/1.2716664
Bagrets, A. Spin-polarized electron transport across metal–organic molecules: a density functional theory approach. J. Chem. Theory Comp. 9, 2801–2815 (2013).
doi: 10.1021/ct4000263
Quek, S. Y. et al. Amine−gold linked single-molecule circuits: experiment and theory. Nano Lett. 7, 3477–3482 (2007).
pubmed: 17900162 doi: 10.1021/nl072058i
Evers, F., Korytár, R., Tewari, S. & van Ruitenbeek, J. M. Advances and challenges in single-molecule electron transport. Rev. Mod. Phys. 92, 035001 (2020).
doi: 10.1103/RevModPhys.92.035001
Klausen, R. S. et al. Evaluating atomic components in fluorene wires. Chem. Sci. 5, 1561–1564 (2014).
doi: 10.1039/c4sc00064a
Yoshizawa, K. An orbital rule for electron transport in molecules. Acc. Chem. Res. 45, 1612–1621 (2012).
pubmed: 22698647 doi: 10.1021/ar300075f
Garner, M. H., Bro-Jørgensen, W., Pedersen, P. D. & Solomon, G. C. Reverse bond-length alternation in cumulenes: candidates for increasing electronic transmission with length. J. Phys. Chem. C 122, 26777–26789 (2018).
doi: 10.1021/acs.jpcc.8b05661
Gil-Guerrero, S., Ramos-Berdullas, N., Pendás, Á. M., Francisco, E. & Mandado, M. Anti-ohmic single molecule electron transport: is it feasible? Nano. Adv. 1, 1901–1913 (2019).
doi: 10.1039/C8NA00384J
Asmar, M. M., Sheehy, D. E. & Vekhter, I. Topological phases of topological-insulator thin films. Phys. Rev. B 97, 075419 (2018).
doi: 10.1103/PhysRevB.97.075419
Brédas, J.-L., Chance, R. & Silbey, R. Comparative theoretical study of the doping of conjugated polymers: polarons in polyacetylene and polyparaphenylene. Phys. Rev. B 26, 5843–5854 (1982).
doi: 10.1103/PhysRevB.26.5843
Madrid, P. B., Polgar, W. E., Toll, L. & Tanga, M. J. Synthesis and antitubercular activity of phenothiazines with reduced binding to dopamine and serotonin receptors. Bioorg. Med. Chem. Lett. 17, 3014–3017 (2007).
pubmed: 17407813 doi: 10.1016/j.bmcl.2007.03.064
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
pubmed: 10062328 doi: 10.1103/PhysRevLett.77.3865
Lenthe, E. V., Baerends, E.-J. & Snijders, J. G. Relativistic regular two‐component hamiltonians. J. Chem. Phys. 99, 4597–4610 (1993).
doi: 10.1063/1.466059
Wilhelm, J., Walz, M., Stendel, M., Bagrets, A. & Evers, F. Ab initio simulations of scanning-tunneling-microscope images with embedding techniques and application to C
pubmed: 23450169 doi: 10.1039/c3cp44286a
Balasubramani, S. G. et al. TURBOMOLE: modular program suite for ab initio quantum-chemical and condensed-matter simulations. J. Chem. Phys. 152, 184107 (2020).
pubmed: 32414256 pmcid: 7228783 doi: 10.1063/5.0004635

Auteurs

Liang Li (L)

Department of Chemistry, Columbia University, New York, NY, USA.

Jonathan Z Low (JZ)

Department of Chemistry, Columbia University, New York, NY, USA.

Jan Wilhelm (J)

Institute of Theoretical Physics, University of Regensburg, Regensburg, Germany.

Guanming Liao (G)

Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China.

Suman Gunasekaran (S)

Department of Chemistry, Columbia University, New York, NY, USA.

Claudia R Prindle (CR)

Department of Chemistry, Columbia University, New York, NY, USA.

Rachel L Starr (RL)

Department of Chemistry, Columbia University, New York, NY, USA.

Dorothea Golze (D)

Technische Universität Dresden, Dresden, König-Bau, Germany.

Colin Nuckolls (C)

Department of Chemistry, Columbia University, New York, NY, USA.

Michael L Steigerwald (ML)

Department of Chemistry, Columbia University, New York, NY, USA.

Ferdinand Evers (F)

Institute of Theoretical Physics, University of Regensburg, Regensburg, Germany. Ferdinand.evers@physik.uni-regensberg.de.

Luis M Campos (LM)

Department of Chemistry, Columbia University, New York, NY, USA. lcampos@columbia.edu.

Xiaodong Yin (X)

Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China. yinxd18@bit.edu.cn.

Latha Venkataraman (L)

Department of Chemistry, Columbia University, New York, NY, USA. lv2117@columbia.edu.
Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA. lv2117@columbia.edu.

Classifications MeSH