Risk prediction of cardiovascular disease using machine learning classifiers.
K-nearest neighbour
cardiovascular disease
machine learning algorithms
multi-layer perceptron
Journal
Open medicine (Warsaw, Poland)
ISSN: 2391-5463
Titre abrégé: Open Med (Wars)
Pays: Poland
ID NLM: 101672167
Informations de publication
Date de publication:
2022
2022
Historique:
received:
11
02
2021
revised:
14
05
2022
accepted:
23
05
2022
entrez:
8
7
2022
pubmed:
9
7
2022
medline:
9
7
2022
Statut:
epublish
Résumé
Cardiovascular disease (CVD) makes our heart and blood vessels dysfunctional and often leads to death or physical paralysis. Therefore, early and automatic detection of CVD can save many human lives. Multiple investigations have been carried out to achieve this objective, but there is still room for improvement in performance and reliability. This study is yet another step in this direction. In this study, two reliable machine learning techniques, multi-layer perceptron (MLP), and
Identifiants
pubmed: 35799599
doi: 10.1515/med-2022-0508
pii: med-2022-0508
pmc: PMC9206502
doi:
Types de publication
Journal Article
Langues
eng
Pagination
1100-1113Informations de copyright
© 2022 Madhumita Pal et al., published by De Gruyter.
Déclaration de conflit d'intérêts
Conflict of interest: There are no conflicts to declare.
Références
Comput Biol Med. 2017 Feb 1;81:167-175
pubmed: 28086200
J Med Syst. 2016 Jul;40(7):178
pubmed: 27286983
IEEE Trans Neural Netw Learn Syst. 2018 Jun;29(6):2516-2529
pubmed: 28500013
J Biomed Inform. 2019 Sep;97:103257
pubmed: 31374261
PLoS One. 2018 Oct 23;13(10):e0206006
pubmed: 30352077
Int J Cardiol. 2016 Mar 15;207:190-1
pubmed: 26803240
Int J Dermatol. 2017 Apr;56(4):474-478
pubmed: 28108992
Expert Rev Cardiovasc Ther. 2020 Feb;18(2):77-84
pubmed: 32066289
PLoS One. 2017 Apr 4;12(4):e0174944
pubmed: 28376093
Comput Methods Programs Biomed. 2019 Mar;170:23-29
pubmed: 30712601
Comput Biol Med. 2019 Aug;111:103346
pubmed: 31288140