Biogas upgrading to methane and removal of volatile organic compounds in a system of zero-valent iron and anaerobic granular sludge.
Anaerobic mix culture microorganisms
Biogas enhancement
H2S removal
Hydrogenotrophic methanogens
Powder and scrub ZVI
VOC reduction
Journal
Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769
Informations de publication
Date de publication:
Dec 2022
Dec 2022
Historique:
received:
30
12
2021
accepted:
26
06
2022
pubmed:
9
7
2022
medline:
22
11
2022
entrez:
8
7
2022
Statut:
ppublish
Résumé
The current study presented a novel process of biogas upgrading to biomethane (higher than 97%) based on anaerobic sludge and zero-valent iron (ZVI) system. When ZVI was added into an aquatic system with anaerobic granular sludge (AnGrSl) under anaerobic abiotic conditions, H
Identifiants
pubmed: 35802326
doi: 10.1007/s11356-022-21750-5
pii: 10.1007/s11356-022-21750-5
doi:
Substances chimiques
Sewage
0
Methane
OP0UW79H66
Biofuels
0
Volatile Organic Compounds
0
Iron
E1UOL152H7
Carbon Dioxide
142M471B3J
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
87245-87256Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Andersson FAT, Karlsson A, Svensson BH, Ejlertsson J (2004) Occurrence and abatement of volatile sulfur compounds during biogas production. J Air Waste Manag Assoc 54:855–861. https://doi.org/10.1080/10473289.2004.10470953
doi: 10.1080/10473289.2004.10470953
Andriamanohiarisoamanana FJ, Shirai T, Yamashiro T et al (2018) Valorizing waste iron powder in biogas production: hydrogen sulfide control and process performances. J Environ Manage 208:134–141. https://doi.org/10.1016/j.jenvman.2017.12.012
doi: 10.1016/j.jenvman.2017.12.012
Angelidaki I, Treu L, Tsapekos P et al (2018) Biogas upgrading and utilization: current status and perspectives. Biotechnol Adv 36:452–466. https://doi.org/10.1016/j.biotechadv.2018.01.011
doi: 10.1016/j.biotechadv.2018.01.011
Angenent LT, Usack JG, Xu J et al (2018) Integrating electrochemical, biological, physical, and thermochemical process units to expand the applicability of anaerobic digestion. Bioresour Technol 247:1085–1094. https://doi.org/10.1016/j.biortech.2017.09.104
doi: 10.1016/j.biortech.2017.09.104
Bajracharya S (2020) Microbial fuel cell coupled with anaerobic treatment processes for wastewater treatment. In: Rouzbeh Abbassi, Asheesh Kumar Yadav, Faisal Khan VG (ed) Integrated Microbial Fuel Cells for Wastewater Treatment. Butterworth-Heinemann, pp 295–311
Bassani I, Kougias PG, Angelidaki I (2016) In-situ biogas upgrading in thermophilic granular UASB reactor: key factors affecting the hydrogen mass transfer rate. Bioresour Technol 221:485–491. https://doi.org/10.1016/j.biortech.2016.09.083
doi: 10.1016/j.biortech.2016.09.083
Charalambous P, Vyrides I (2021) In situ biogas upgrading and enhancement of anaerobic digestion of cheese whey by addition of scrap or powder zero-valent iron (ZVI). J Environ Manage 280:111651. https://doi.org/10.1016/j.jenvman.2020.111651
doi: 10.1016/j.jenvman.2020.111651
Cheng J, Zhu C, Zhu J et al (2020) Effects of waste rusted iron shavings on enhancing anaerobic digestion of food wastes and municipal sludge. J Clean Prod 242:118195. https://doi.org/10.1016/j.jclepro.2019.118195
doi: 10.1016/j.jclepro.2019.118195
Farghali M, Andriamanohiarisoamanana FJ, Ahmed MM et al (2020) Prospects for biogas production and H2S control from the anaerobic digestion of cattle manure: The influence of microscale waste iron powder and iron oxide nanoparticles. Waste Manag 101:141–149. https://doi.org/10.1016/j.wasman.2019.10.003
doi: 10.1016/j.wasman.2019.10.003
Fu S, Angelidaki I, Zhang Y (2021) In situ biogas upgrading by CO2-to-CH4 bioconversion. Trends Biotechnol 39:336–347. https://doi.org/10.1016/j.tibtech.2020.08.006
doi: 10.1016/j.tibtech.2020.08.006
Jiang Y, May HD, Lu L et al (2019) Carbon dioxide and organic waste valorization by microbial electrosynthesis and electro-fermentation. Water Res 149:42–55. https://doi.org/10.1016/j.watres.2018.10.092
doi: 10.1016/j.watres.2018.10.092
Lakhouit A, Alsulami BT (2020) Evaluation of risk assessment of landfill emissions and their impacts on human health. Arab J Geosci 13 https://doi.org/10.1007/s12517-020-06218-5
Liu Y, Zhang Y, Ni BJ (2015) Zero valent iron simultaneously enhances methane production and sulfate reduction in anaerobic granular sludge reactors. Water Res 75:292–300. https://doi.org/10.1016/j.watres.2015.02.056
doi: 10.1016/j.watres.2015.02.056
Menikea KK, Kyprianou A, Samanides CG, et al (2020) Anaerobic granular sludge and zero-valent scrap iron (ZVSI) pre-treated with green tea as a sustainable system for conversion of CO2 to CH4. J Clean Prod 268 https://doi.org/10.1016/j.jclepro.2020.121860
Muñoz R, Meier L, Diaz I, Jeison D (2015) A review on the state-of-the-art of physical/chemical and biological technologies for biogas upgrading. Rev Environ Sci Biotechnol 14:727–759. https://doi.org/10.1007/s11157-015-9379-1
doi: 10.1007/s11157-015-9379-1
Mystrioti C, Xanthopoulou TD, Tsakiridis PE et al (2016) Comparative evaluation of five plant extracts and juices for nano iron synthesis and application for hexavalent chromium reduction. Sci Total Environ 539:105–113. https://doi.org/10.1016/j.scitotenv.2015.08.091
doi: 10.1016/j.scitotenv.2015.08.091
Owen WF, Stuckey DC, Healy JB et al (1979) Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res 13:485–492. https://doi.org/10.1016/0043-1354(79)90043-5
doi: 10.1016/0043-1354(79)90043-5
Paolini V, Petracchini F, Carnevale M et al (2018) Characterisation and cleaning of biogas from sewage sludge for biomethane production. J Environ Manage 217:288–296. https://doi.org/10.1016/j.jenvman.2018.03.113
doi: 10.1016/j.jenvman.2018.03.113
Prévoteau A, Carvajal-Arroyo JM, Ganigué R, Rabaey K (2020) Microbial electrosynthesis from CO2: forever a promise? Curr Opin Biotechnol 62:48–57. https://doi.org/10.1016/j.copbio.2019.08.014
doi: 10.1016/j.copbio.2019.08.014
Ruan R, Cao J, Li C, et al (2017) The influence of micro-oxygen addition on desulfurization performance and microbial communities during waste-activated sludge digestion in a rusty scrap iron-loaded anaerobic digester. Energies 10 https://doi.org/10.3390/en10020258
Salazar Gómez JI, Lohmann H, Krassowski J (2016) Determination of volatile organic compounds from biowaste and co-fermentation biogas plants by single-sorbent adsorption. Chemosphere 153:48–57. https://doi.org/10.1016/j.chemosphere.2016.02.128
doi: 10.1016/j.chemosphere.2016.02.128
Samanides CG, Koutsokeras L, Constantinides G, Vyrides I (2020) Methanogenesis inhibition in anaerobic granular sludge for the generation of volatile fatty acids from CO2 and zero valent iron. Front Energy Res 8:1–16. https://doi.org/10.3389/fenrg.2020.00037
doi: 10.3389/fenrg.2020.00037
Schiebahn S, Grube T, Robinius M et al (2015) Power to gas: technological overview, systems analysis and economic assessment for a case study in Germany. Int J Hydrogen Energy 40:4285–4294. https://doi.org/10.1016/j.ijhydene.2015.01.123
doi: 10.1016/j.ijhydene.2015.01.123
Sun Q, Li H, Yan J et al (2015) Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation. Renew Sustain Energy Rev 51:521–532. https://doi.org/10.1016/j.rser.2015.06.029
doi: 10.1016/j.rser.2015.06.029
Vyrides I, Andronikou M, Kyprianou A et al (2018) CO2 conversion to CH4 using Zero Valent Iron (ZVI) and anaerobic granular sludge: optimum batch conditions and microbial pathways. J CO2 Util 27:415–422. https://doi.org/10.1016/j.jcou.2018.08.023
doi: 10.1016/j.jcou.2018.08.023
Vyrides I, Stuckey DC (2009) Effect of fluctuations in salinity on anaerobic biomass and production of soluble microbial products (SMPs). Biodegradation 20:165–175. https://doi.org/10.1007/s10532-008-9210-6
doi: 10.1007/s10532-008-9210-6
Wei J, Hao X, van Loosdrecht MCM, Li J (2018) Feasibility analysis of anaerobic digestion of excess sludge enhanced by iron: a review. Renew Sustain Energy Rev 89:16–26. https://doi.org/10.1016/j.rser.2018.02.042
doi: 10.1016/j.rser.2018.02.042
Zabranska J, Pokorna D (2018) Bioconversion of carbon dioxide to methane using hydrogen and hydrogenotrophic methanogens. Biotechnol Adv 1–14 https://doi.org/10.1016/j.biotechadv.2017.12.003
Zhang Y, Zhu Z, Zheng Y, et al (2019) Characterization of volatile organic compound (VOC) emissions from swine manure biogas digestate storage. Atmosphere (Basel) 10 https://doi.org/10.3390/atmos10070411