Optimal acceleration voltage for near-atomic resolution imaging of layer-stacked 2D polymer thin films.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
08 Jul 2022
08 Jul 2022
Historique:
received:
14
12
2021
accepted:
29
06
2022
entrez:
8
7
2022
pubmed:
9
7
2022
medline:
9
7
2022
Statut:
epublish
Résumé
Despite superb instrumental resolution in modern transmission electron microscopes (TEM), high-resolution imaging of organic two-dimensional (2D) materials is a formidable task. Here, we present that the appropriate selection of the incident electron energy plays a crucial role in reducing the gap between achievable resolution in the image and the instrumental limit. Among a broad range of electron acceleration voltages (300 kV, 200 kV, 120 kV, and 80 kV) tested, we found that the highest resolution in the HRTEM image is achieved at 120 kV, which is 1.9 Å. In two imine-based 2D polymer thin films, unexpected molecular interstitial defects were unraveled. Their structural nature is identified with the aid of quantum mechanical calculations. Furthermore, the increased image resolution and enhanced image contrast at 120 kV enabled the detection of functional groups at the pore interfaces. The experimental setup has also been employed for an amorphous organic 2D material.
Identifiants
pubmed: 35803950
doi: 10.1038/s41467-022-31688-4
pii: 10.1038/s41467-022-31688-4
pmc: PMC9270374
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3948Subventions
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : 492191310
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : 417590517
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : 426572620
Informations de copyright
© 2022. The Author(s).
Références
J Ultrastruct Res. 1976 Jun;55(3):457-61
pubmed: 933265
Microsc Microanal. 2006 Jun;12(3):191-205
pubmed: 17481356
Adv Mater. 2022 Jan;34(1):e2106073
pubmed: 34613639
Phys Rev Lett. 2016 Aug 12;117(7):076101
pubmed: 27563976
J Am Chem Soc. 2021 Apr 21;143(15):5636-5642
pubmed: 33848155
Micron. 2019 May;120:96-103
pubmed: 30818248
Acc Chem Res. 2020 Aug 18;53(8):1672-1685
pubmed: 32786335
Phys Chem Chem Phys. 2016 Apr 28;18(17):11821-8
pubmed: 26852720
Ultramicroscopy. 2009 Aug;109(9):1144-7
pubmed: 19541421
Micron. 2019 Apr;119:72-87
pubmed: 30684768
Nature. 2020 Jan;577(7789):199-203
pubmed: 31915396
Chem Mater. 2021 Feb 23;33(4):1341-1352
pubmed: 35296112
Angew Chem Int Ed Engl. 2018 Oct 15;57(42):13748-13763
pubmed: 29845730
Radiat Res. 1973 Aug;55(2):205-24
pubmed: 4722685
Phys Chem Chem Phys. 2015 Feb 21;17(7):5290-7
pubmed: 25607586
J Struct Biol. 2015 Nov;192(2):179-87
pubmed: 26431895
Nat Commun. 2011 Nov 15;2:536
pubmed: 22086337
Chemistry. 2017 Mar 13;23(15):3773-3783
pubmed: 28111823
Philos Trans A Math Phys Eng Sci. 2009 Sep 28;367(1903):3809-23
pubmed: 19687067
J Am Chem Soc. 2022 Feb 23;144(7):3233-3241
pubmed: 35147035
Nat Chem. 2019 Nov;11(11):994-1000
pubmed: 31548668
Chem Soc Rev. 2013 Jan 21;42(2):548-68
pubmed: 23060270
Ultramicroscopy. 2013 Apr;127:100-8
pubmed: 22910614
Sci Adv. 2020 Aug 14;6(33):eabb5976
pubmed: 32851180
Microsc Res Tech. 2012 Nov;75(11):1550-6
pubmed: 22807142
Nat Mater. 2014 Nov;13(11):1044-9
pubmed: 25242534
J Ultrastruct Res. 1971 Aug;36(3):466-82
pubmed: 5107051
J Mol Biol. 1980 Aug 5;141(2):147-61
pubmed: 7441748
Pharmazie. 2013 Feb;68(2):100-9
pubmed: 23469681
Ultramicroscopy. 2012 Mar;114:31-7
pubmed: 22356786
Ultramicroscopy. 2019 Aug;203:125-131
pubmed: 30773415
J Phys Chem A. 2020 Apr 2;124(13):2672-2682
pubmed: 32207935
Ultramicroscopy. 2022 Jul;237:113510
pubmed: 35367900
Nat Commun. 2018 Jul 3;9(1):2600
pubmed: 29968723
Science. 2013 Oct 11;342(6155):224-7
pubmed: 24115436