Anti-atherosclerotic Effects of Myrtenal in High-Fat Diet-Induced Atherosclerosis in Rats.


Journal

Applied biochemistry and biotechnology
ISSN: 1559-0291
Titre abrégé: Appl Biochem Biotechnol
Pays: United States
ID NLM: 8208561

Informations de publication

Date de publication:
Dec 2022
Historique:
accepted: 26 06 2022
pubmed: 9 7 2022
medline: 2 12 2022
entrez: 8 7 2022
Statut: ppublish

Résumé

The major cause of death worldwide is atherosclerosis-related cardiovascular disease (ACD). Myrtenal was studied to determine control rats were given standard diets and a high-fat diet was given to AS model groups. Atherosclerosis-related cardiovascular disease (ACD) is globally attributed to being a predominant cause of mortality. While the beneficial effects of Myrtenal, the monoterpene from natural compounds, are increasingly being acknowledged, its anti-atherosclerotic activity has not been demonstrated clearly. The present study is proposed to determine the anti-atherosclerotic activity of Myrtenal in high-fat diet-induced atherosclerosis (AS) rat models. Control groups were maintained with standard diets, the AS model rats were provided a high-fat diet, two of the experimental groups fed with a high-fat diet were treated with Myrtenal (50 mg/kg and 100 mg/kg), and one experimental group on high-fat diet was treated with simvastatin (10 mg/kg) for 30 days. The levels of inflammatory cytokines were analyzed using kits. The lipoproteins and the lipid profile were estimated using an auto-analyzer. The atherogenic index and marker enzyme activities were also determined. Serum concentrations of 6-keto-prostaglandin F1α (6-keto-PGF1α), thromboxaneB2 (TXB2), endothelin (ET), and nitric oxide (NO) were measured. The AS model groups indicated altered lipid profile, lipoprotein content, atherogenic index, calcium levels, HMG-CoA reductase activity, collagen level, and mild mineralization indicating atherosclerosis, while the AS-induced Myrtenal-treated groups demonstrated anti-atherogenic activity. The Myrtenal-treated groups exhibited a decreased TC, TG, and LDLc levels; increased HDLc levels; and a decline in the inflammatory cytokines such as CRP, IL-1β, IL-8, and IL-18 when compared to the untreated AS rats. Furthermore, Myrtenal decreased ET, TXB2, and 6-keto-PGF1α levels indicating its anti-atherosclerotic activity. The study results thus indicate that Myrtenal modulates the lipid metabolic pathway to exert its anti-atherosclerotic activity.

Identifiants

pubmed: 35804285
doi: 10.1007/s12010-022-04044-x
pii: 10.1007/s12010-022-04044-x
doi:

Substances chimiques

myrtenal 8J97443QRZ
Lipids 0
Interleukin-1beta 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5717-5733

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Malekmohammad, K., Bezsonov, E. E., & Rafieian-Kopaei, M. (2021). Role of lipid accumulation and inflammation in atherosclerosis: Focus on molecular and cellular mechanisms. Frontiers in Cardiovascular Medicine, 8, 707529.
pubmed: 34552965 pmcid: 8450356 doi: 10.3389/fcvm.2021.707529
Marchio, P., Guerra-Ojeda, S., Vila, J. M., Aldasoro, M., Victor, V. M., & Mauricio, M. D. (2019). Targeting early atherosclerosis: A focus on oxidative stress and inflammation. Oxidative Medicine and Cellular Longevity, 2019, 8563845.
pubmed: 31354915 pmcid: 6636482 doi: 10.1155/2019/8563845
Padro, T., Vilahur, G., Sánchez-Hernández, J., Hernández, M., Antonijoan, R. M., Perez, A., & Badimon, L. (2015). Lipidomic changes of LDL in overweight and moderately hypercholesterolemic subjects taking phytosterol- and omega-3-supplemented milk. Journal of Lipid Research, 56(5), 1043–1056.
pubmed: 25773888 pmcid: 4409281 doi: 10.1194/jlr.P052217
Zeng, L., Mathew, A. V., Byun, J., Atkins, K. B., Brosius, F. C., & Pennathur, S. (2018). Myeloperoxidase-derived oxidants damage artery wall proteins in an animal model of chronic kidney disease-accelerated atherosclerosis. Journal of Biological Chemistry, 293(19), 7238–7249.
pubmed: 29581235 pmcid: 5949994 doi: 10.1074/jbc.RA117.000559
Gesto, D. S., Pereira, C. M. S., Cerqueira, N. M. F. S., & Sousa, S. F. (2020). An atomic-level perspective of hmg-coa-reductase: The target enzyme to treat hypercholesterolemia. Molecules, 25(17), 3891.
pubmed: 32859023 pmcid: 7503714 doi: 10.3390/molecules25173891
Mohammad, S., Nguyen, H., Nguyen, M., Abdel-Rasoul, M., Nguyen, V., Nguyen, C. D., Nguyen, K. T., Li, L., & Kitzmiller, J. P. (2019). Pleiotropic effects of statins: Untapped potential for statin pharmacotherapy. Current Vascular Pharmacology, 17(3), 239–261.
pubmed: 30033872 doi: 10.2174/1570161116666180723120608
Taylor, F., Ward, K., Moore, T. H., Burke, M., Davey Smith, G., Casas, J. P., Ebrahim, S. (2013). Statins for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev, 1, CD004816.
Pinal-Fernandez, I., Casal-Dominguez, M., & Mammen, A. L. (2018). Statins: Pros and cons. Medicina Clínica (Barcelona), 150(10), 398–402.
doi: 10.1016/j.medcli.2017.11.030
Serban, M. M., Mikhailidis, D. P., Toth, P. P., Grzesiak, M., Mazidi, M., Maciejewski, M., & Banach, M. (2018). The potential role of statins in preeclampsia and dyslipidemia during gestation: A narrative review. Expert Opinion on Investigational Drugs, 27(5), 427–435.
doi: 10.1080/13543784.2018.1465927
Lokeshkumar, B., Sathishkumar, V., Nandakumar, N., Rengarajan, T., Madankumar, A., & Balasubramanian, M. P. (2015). Anti-Oxidative effect of myrtenal in prevention and treatment of colon cancer induced by 1, 2-Dimethyl Hydrazine (DMH) in experimental animals. Biomol Ther (Seoul), 23(5), 471–478.
pubmed: 26336588 doi: 10.4062/biomolther.2015.039
Zielinska-Błajet, M., & Feder-Kubis, J. (2020). Monoterpenes and their derivatives—recent development in biological and medical applications. International Journal of Molecular Sciences, 21, 7078.
pubmed: 32992914 pmcid: 7582973 doi: 10.3390/ijms21197078
Corin, K., Baaske, P., Geissler, S., et al. (2011). Structure and function analyses of the purified GPCR human vomeronasal type 1 receptor 1. Science and Reports, 1, 172.
doi: 10.1038/srep00172
Martins, B. X., Arruda, R. F., Costa, G. A., Jerdy, H., de Souza, S. B., Santos, J. M., de Freitas, W. R., Kanashiro, M. M., de Carvalho, E. C. Q., Sant’Anna, N. F., Antunes, F., Martinez-Zaguilan, R., Okorokova-Facanha, A. L., & Facanha, A. R. (2019). Myrtenal-induced V-ATPase inhibition - A toxicity mechanism behind tumor cell death and suppressed migration and invasion in melanoma. Biochimica et Biophysica Acta - General Subjects, 1863(1), 1–12.
doi: 10.1016/j.bbagen.2018.09.006
Dragomanova, S., Tancheva, L., Georgieva, M., Georgieva, A., Stoeva, S., Kalfin, R. (2015). Antioxidant mechanism in the preventive effect of myrtenal on Alzheimer’s disease progression on experimental mouse model. European College of Neuropsychopharmacology, Amsterdam, The Nederlands, 2015, Abstract book of ECNP, 25(2), S578–9.
Klisurov, R., Dragomanova, S., Tancheva, L., Kalfin, R. (2017). Study on the neuroprotective mechanisms of myrtenal on experimental rats. 2
Kaufmann, D., Dogra, A. K., & Wink, M. (2011). Myrtenal inhibits acetylcholinesterase, a known Alzheimer target. Journal of Pharmacy and Pharmacology, 63(10), 1368–1371.
pubmed: 21899553 doi: 10.1111/j.2042-7158.2011.01344.x
Corin, K., Baaske, P., Geissler, S., Wienken, C. J., Duhr, S., Braun, D., & Zhang, S. (2011). Structure and function analyses of the purified GPCR human vomeronasal type 1 receptor 1. Science and Reports, 1, 172.
doi: 10.1038/srep00172
Dragomanova, S., Klisurov, R., Georgieva, M., Lazarova, M., Dishovsky, C., Kalfin, R., et al. (2018). Effect of myrtenal on social behavior and memory of rats. 10th Congress of Toxicology in Developing Countries (CTDC10), 18–21 April, Belgrade, Serbia.
Li, W. X., Qian, P., Guo, Y. T., Gu, L., Jurat, J., Bai, Y., & Zhang, D. F. (2021). Myrtenal and β-caryophyllene oxide screened from Liquidambaris Fructus suppress NLRP3 inflammasome components in rheumatoid arthritis. BMC Complement Med Ther, 21(1), 242.
pubmed: 34583676 pmcid: 8480017 doi: 10.1186/s12906-021-03410-2
Ayyasamy, R., & Leelavinothan, P. (2016). Myrtenal alleviates hyperglycaemia, hyperlipidaemia and improves pancreatic insulin level in STZ-induced diabetic rats. Pharmaceutical Biology, 54(11), 2521–2527.
pubmed: 27158912 doi: 10.3109/13880209.2016.1168852
Rathinam, A., & Pari, L. (2016). Myrtenal ameliorates hyperglycemia by enhancing GLUT2 through Akt in the skeletal muscle and liver of diabetic rats. Chemico-Biological Interactions, 256, 161–166.
pubmed: 27417257 doi: 10.1016/j.cbi.2016.07.009
Papandreou, D., & Hamid, Z. T. (2015). The role of vitamin d in diabetes and cardiovascular disease: An updated review of the literature. Disease Markers, 2015, 580474.
pubmed: 26576069 pmcid: 4630385 doi: 10.1155/2015/580474
Edwards, C. A., & O’Brien, W. D. (1980). Modified assay for determination of hydroxypro-line in a tissue hydrolyzate. Clinica Chimica Acta, 104, 161–167.
doi: 10.1016/0009-8981(80)90192-8
Lowry, O. H., Rosebrough, N. J., Farr, A. L., et al. (1951). Protein measurements with the folinphenol reagent. Journal of Biological Chemistry, 193, 265–275.
pubmed: 14907713 doi: 10.1016/S0021-9258(19)52451-6
Rao, A. V., Ramakrishnan, S., Indirect assessment of hydroxylmethylglutaryl-CoAreductase (NADPH) activity in liver. Clin Chem, 21, 1523–1525.
Itaya, K. (1977). A more sensitive and stable colorimetric determination of free fatty acidsin blood. Journal of Lipid Research, 18, 663–665.
pubmed: 903712 doi: 10.1016/S0022-2275(20)41609-8
Onat, A., Can, G., Kaya, H., et al. (2010). Atherogenic index of plasma (log10 (triglyceride/high density lipoprotein cholesterol) predicts high blood pressure, diabetes, and vascular events. Journal of Clinical Lipidology, 4, 89–98.
pubmed: 21122635 doi: 10.1016/j.jacl.2010.02.005
Miura, Y., & Suzuki, H. (2019). Dyslipidemia and atherosclerotic carotid artery stenosis. Vessel Plus, 3, 1.
Shrivastava, A., Chaturvedi, U., Singh, S. V., Saxena, J. K., & Bhatia, G. (2013). Lipid lowering and antioxidant effect of miglitol in triton treated hyperlipidemic and high fat diet induced obese rats. Lipids, 48(6), 597–607.
pubmed: 23334955 doi: 10.1007/s11745-012-3753-3
Gianazza, E., Brioschi, M., Fernandez, A. M., & Banfi, C. (2019). Lipoxidation in cardiovascular diseases. Redox Biol, 23, 101119.
pubmed: 30833142 pmcid: 6859589 doi: 10.1016/j.redox.2019.101119
Khatana, C., Saini, N. K., Chakrabarti, S., Saini, V., Sharma, A., Saini, R. V., Saini, A. K. (2020). Mechanistic insights into the oxidized low-density lipoprotein-induced atherosclerosis. Oxidative Medicine and Cellular Longevity, 2020.
Hoenig, M. R. (2008). Implications of the obesity epidemic for lipid-lowering therapy: Non-HDL cholesterol should replace LDL cholesterol as the primary therapeutic target. Vasc Health Risk Manag, 4(1), 143–156.
pubmed: 18629364 pmcid: 2464759 doi: 10.2147/vhrm.2008.04.01.143
Xiao, C. W., Wood, C. M., Swist, E., Nagasaka, R., Sarafin, K., Gagnon, C., Fernandez, L., Faucher, S., Wu, H. X., Kenney, L., & Ratnayake, W. M. (2016). Cardio-metabolic disease risks and their associations with circulating 25-hydroxyvitamin D and omega-3 levels in South Asian and White Canadians. PLoS ONE, 11(1), e0147648.
pubmed: 26809065 pmcid: 4725777 doi: 10.1371/journal.pone.0147648
Zaric, B. L., Radovanovic, J. N., Gluvic, Z., Stewart, A. J., Essack, M., Motwalli, O., Gojobori, T., & Isenovic, E. R. (2020). Atherosclerosis linked to aberrant amino acid metabolism and immunosuppressive amino acid catabolizing enzymes. Frontiers in Immunology, 11, 551758.
pubmed: 33117340 pmcid: 7549398 doi: 10.3389/fimmu.2020.551758
Subramani, C., Rajakkannu, A., Rathinam, A., Gaidhani, S., Raju, I., Kartar Singh, D. V. (2017). Anti-atherosclerotic activity of root bark of Premna integrifolia Linn. in high fat diet induced atherosclerosis model rats. J Pharm Anal, 7(2), 123–128.
Abdelhalim, M. A., Siiddiqi, N. J., Alhomida, A. S., & Al-Ayed, M. S. (2008). Effects of feeding periods of high cholesterol and saturated fat diet on blood biochemistry and hydroxyproline fractions in rabbits. Bioinformatics and Biology Insights, 2, 95–100.
pubmed: 19812768 pmcid: 2735948 doi: 10.4137/BBI.S445
Kontush, A., Lhomme, M., & Chapman, M. J. (2013). Unraveling the complexities of the HDL lipidome. Journal of Lipid Research, 54(11), 2950–2963.
pubmed: 23543772 pmcid: 3793600 doi: 10.1194/jlr.R036095
Misra, B. B., Puppala, S. R., Comuzzie, A. G., Mahaney, M. C., VandeBerg, J. L., Olivier, M., & Cox, L. A. (2019). Analysis of serum changes in response to a high-fat high cholesterol diet challenge reveals metabolic biomarkers of atherosclerosis. PLoS ONE, 14(4), e0214487.
pubmed: 30951537 pmcid: 6450610 doi: 10.1371/journal.pone.0214487
Wu, Y., Pan, N., An, Y., Xu, M., Tan, L., & Zhang, L. (2021). Diagnostic and prognostic biomarkers for myocardial infarction. Front Cardiovasc Med, 7, 617277.
pubmed: 33614740 pmcid: 7886815 doi: 10.3389/fcvm.2020.617277
Parsanathan, R., & Jain, S. K. (2019). Novel invasive and noninvasive cardiac-specific biomarkers in obesity and cardiovascular diseases. Metabolic Syndrome and Related Disorders, 18(1), 10–30.
pubmed: 31618136 doi: 10.1089/met.2019.0073
Hesari, M., Mohammadi, P., Khademi, F., Shackebaei, D., Momtaz, S., Moasefi, N., Farzaei, M. H., & Abdollahi, M. (2021). Current advances in the use of nanophytomedicine therapies for human cardiovascular diseases. International Journal of Nanomedicine, 16, 3293–3315.
pubmed: 34007178 pmcid: 8123960 doi: 10.2147/IJN.S295508
Burnstock, G., & Pelleg, A. (2015). Cardiac purinergic signalling in health and disease. Purinergic Signal, 11(1), 1–46.
pubmed: 25527177 doi: 10.1007/s11302-014-9436-1
Tan, B. L., & Norhaizan, M. E. (2019). Effect of high-fat diets on oxidative stress, cellular inflammatory response and cognitive function. Nutrients, 11(11), 2579.
pubmed: 31731503 pmcid: 6893649 doi: 10.3390/nu11112579
Li, B., Xia, Y., & Hu, B. (2020). Infection and atherosclerosis: TLR-dependent pathways. Cellular and Molecular Life Sciences, 77(14), 2751–2769.
pubmed: 32002588 pmcid: 7223178 doi: 10.1007/s00018-020-03453-7
Schumacher, M. M., Jun, D. J., Johnson, B. M., & DeBose-Boyd, R. A. (2018). UbiA prenyltransferase domain-containing protein-1 modulates HMG-CoA reductase degradation to coordinate synthesis of sterol and nonsterol isoprenoids. Journal of Biological Chemistry, 293(1), 312–323.
pubmed: 29167270 doi: 10.1074/jbc.RA117.000423
Smith, L. R., & Barton, E. R. (2014). Collagen content does not alter the passive mechanical properties of fibrotic skeletal muscle in mdx mice. American Journal of Physiology. Cell Physiology, 306(10), C889–C898.
pubmed: 24598364 pmcid: 4024713 doi: 10.1152/ajpcell.00383.2013
Saigusa, R., Winkels, H., & Ley, K. (2020). T cell subsets and functions in atherosclerosis. Nature Reviews. Cardiology, 17(7), 387–401.
pubmed: 32203286 pmcid: 7872210 doi: 10.1038/s41569-020-0352-5
Bäck, M., Yurdagul, A., Tabas, I., Öörni, K., & Kovanen, P. T. (2019). Inflammation and its resolution in atherosclerosis: Mediators and therapeutic opportunities. Nature Reviews. Cardiology, 16(7), 389–406.
pubmed: 30846875 pmcid: 6727648
Cheng, Z., Jia, W., Tian, X., Jiang, P., Zhang, Y., Li, J., Tian, C., Liu, J. (2020). Cotinine inhibits TLR4/NF-κB signaling pathway and improves deep vein thrombosis in rats. Biosci Rep, 40(6), BSR20201293.

Auteurs

Liyan Yu (L)

Department of Geriatrics, Yantai Yantaishan Hospital, No. 91 Jiefang Road, Yantai City, 264000, Shandong Province, China.

Hongguang Liu (H)

Department of Cardiology, Liaocheng Third People's Hospital, Liaocheng City, 252000, Shandong, China.

Xiaoxia Ma (X)

Department of Functional Examination, Central Hospital Affiliated to Shandong First Medical University, No.105, Jiefang road, Lixia District, Jinan City, 250013, Shandong Province, China.

Vidya Devanathadesikan Seshadri (VD)

Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al-Kharj, Kingdom of Saudi Arabia.

Xuan Gao (X)

Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwuweiqi Road, Jinan City, 250021, Shandong Province, China. mgaoxuan@sina.com.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH