Anti-atherosclerotic Effects of Myrtenal in High-Fat Diet-Induced Atherosclerosis in Rats.
Atherosclerosis
Cardiovascular disease
Lipoprotein lipase
Lipoproteins
Macrophages
Triglyceride
Journal
Applied biochemistry and biotechnology
ISSN: 1559-0291
Titre abrégé: Appl Biochem Biotechnol
Pays: United States
ID NLM: 8208561
Informations de publication
Date de publication:
Dec 2022
Dec 2022
Historique:
accepted:
26
06
2022
pubmed:
9
7
2022
medline:
2
12
2022
entrez:
8
7
2022
Statut:
ppublish
Résumé
The major cause of death worldwide is atherosclerosis-related cardiovascular disease (ACD). Myrtenal was studied to determine control rats were given standard diets and a high-fat diet was given to AS model groups. Atherosclerosis-related cardiovascular disease (ACD) is globally attributed to being a predominant cause of mortality. While the beneficial effects of Myrtenal, the monoterpene from natural compounds, are increasingly being acknowledged, its anti-atherosclerotic activity has not been demonstrated clearly. The present study is proposed to determine the anti-atherosclerotic activity of Myrtenal in high-fat diet-induced atherosclerosis (AS) rat models. Control groups were maintained with standard diets, the AS model rats were provided a high-fat diet, two of the experimental groups fed with a high-fat diet were treated with Myrtenal (50 mg/kg and 100 mg/kg), and one experimental group on high-fat diet was treated with simvastatin (10 mg/kg) for 30 days. The levels of inflammatory cytokines were analyzed using kits. The lipoproteins and the lipid profile were estimated using an auto-analyzer. The atherogenic index and marker enzyme activities were also determined. Serum concentrations of 6-keto-prostaglandin F1α (6-keto-PGF1α), thromboxaneB2 (TXB2), endothelin (ET), and nitric oxide (NO) were measured. The AS model groups indicated altered lipid profile, lipoprotein content, atherogenic index, calcium levels, HMG-CoA reductase activity, collagen level, and mild mineralization indicating atherosclerosis, while the AS-induced Myrtenal-treated groups demonstrated anti-atherogenic activity. The Myrtenal-treated groups exhibited a decreased TC, TG, and LDLc levels; increased HDLc levels; and a decline in the inflammatory cytokines such as CRP, IL-1β, IL-8, and IL-18 when compared to the untreated AS rats. Furthermore, Myrtenal decreased ET, TXB2, and 6-keto-PGF1α levels indicating its anti-atherosclerotic activity. The study results thus indicate that Myrtenal modulates the lipid metabolic pathway to exert its anti-atherosclerotic activity.
Identifiants
pubmed: 35804285
doi: 10.1007/s12010-022-04044-x
pii: 10.1007/s12010-022-04044-x
doi:
Substances chimiques
myrtenal
8J97443QRZ
Lipids
0
Interleukin-1beta
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
5717-5733Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Malekmohammad, K., Bezsonov, E. E., & Rafieian-Kopaei, M. (2021). Role of lipid accumulation and inflammation in atherosclerosis: Focus on molecular and cellular mechanisms. Frontiers in Cardiovascular Medicine, 8, 707529.
pubmed: 34552965
pmcid: 8450356
doi: 10.3389/fcvm.2021.707529
Marchio, P., Guerra-Ojeda, S., Vila, J. M., Aldasoro, M., Victor, V. M., & Mauricio, M. D. (2019). Targeting early atherosclerosis: A focus on oxidative stress and inflammation. Oxidative Medicine and Cellular Longevity, 2019, 8563845.
pubmed: 31354915
pmcid: 6636482
doi: 10.1155/2019/8563845
Padro, T., Vilahur, G., Sánchez-Hernández, J., Hernández, M., Antonijoan, R. M., Perez, A., & Badimon, L. (2015). Lipidomic changes of LDL in overweight and moderately hypercholesterolemic subjects taking phytosterol- and omega-3-supplemented milk. Journal of Lipid Research, 56(5), 1043–1056.
pubmed: 25773888
pmcid: 4409281
doi: 10.1194/jlr.P052217
Zeng, L., Mathew, A. V., Byun, J., Atkins, K. B., Brosius, F. C., & Pennathur, S. (2018). Myeloperoxidase-derived oxidants damage artery wall proteins in an animal model of chronic kidney disease-accelerated atherosclerosis. Journal of Biological Chemistry, 293(19), 7238–7249.
pubmed: 29581235
pmcid: 5949994
doi: 10.1074/jbc.RA117.000559
Gesto, D. S., Pereira, C. M. S., Cerqueira, N. M. F. S., & Sousa, S. F. (2020). An atomic-level perspective of hmg-coa-reductase: The target enzyme to treat hypercholesterolemia. Molecules, 25(17), 3891.
pubmed: 32859023
pmcid: 7503714
doi: 10.3390/molecules25173891
Mohammad, S., Nguyen, H., Nguyen, M., Abdel-Rasoul, M., Nguyen, V., Nguyen, C. D., Nguyen, K. T., Li, L., & Kitzmiller, J. P. (2019). Pleiotropic effects of statins: Untapped potential for statin pharmacotherapy. Current Vascular Pharmacology, 17(3), 239–261.
pubmed: 30033872
doi: 10.2174/1570161116666180723120608
Taylor, F., Ward, K., Moore, T. H., Burke, M., Davey Smith, G., Casas, J. P., Ebrahim, S. (2013). Statins for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev, 1, CD004816.
Pinal-Fernandez, I., Casal-Dominguez, M., & Mammen, A. L. (2018). Statins: Pros and cons. Medicina Clínica (Barcelona), 150(10), 398–402.
doi: 10.1016/j.medcli.2017.11.030
Serban, M. M., Mikhailidis, D. P., Toth, P. P., Grzesiak, M., Mazidi, M., Maciejewski, M., & Banach, M. (2018). The potential role of statins in preeclampsia and dyslipidemia during gestation: A narrative review. Expert Opinion on Investigational Drugs, 27(5), 427–435.
doi: 10.1080/13543784.2018.1465927
Lokeshkumar, B., Sathishkumar, V., Nandakumar, N., Rengarajan, T., Madankumar, A., & Balasubramanian, M. P. (2015). Anti-Oxidative effect of myrtenal in prevention and treatment of colon cancer induced by 1, 2-Dimethyl Hydrazine (DMH) in experimental animals. Biomol Ther (Seoul), 23(5), 471–478.
pubmed: 26336588
doi: 10.4062/biomolther.2015.039
Zielinska-Błajet, M., & Feder-Kubis, J. (2020). Monoterpenes and their derivatives—recent development in biological and medical applications. International Journal of Molecular Sciences, 21, 7078.
pubmed: 32992914
pmcid: 7582973
doi: 10.3390/ijms21197078
Corin, K., Baaske, P., Geissler, S., et al. (2011). Structure and function analyses of the purified GPCR human vomeronasal type 1 receptor 1. Science and Reports, 1, 172.
doi: 10.1038/srep00172
Martins, B. X., Arruda, R. F., Costa, G. A., Jerdy, H., de Souza, S. B., Santos, J. M., de Freitas, W. R., Kanashiro, M. M., de Carvalho, E. C. Q., Sant’Anna, N. F., Antunes, F., Martinez-Zaguilan, R., Okorokova-Facanha, A. L., & Facanha, A. R. (2019). Myrtenal-induced V-ATPase inhibition - A toxicity mechanism behind tumor cell death and suppressed migration and invasion in melanoma. Biochimica et Biophysica Acta - General Subjects, 1863(1), 1–12.
doi: 10.1016/j.bbagen.2018.09.006
Dragomanova, S., Tancheva, L., Georgieva, M., Georgieva, A., Stoeva, S., Kalfin, R. (2015). Antioxidant mechanism in the preventive effect of myrtenal on Alzheimer’s disease progression on experimental mouse model. European College of Neuropsychopharmacology, Amsterdam, The Nederlands, 2015, Abstract book of ECNP, 25(2), S578–9.
Klisurov, R., Dragomanova, S., Tancheva, L., Kalfin, R. (2017). Study on the neuroprotective mechanisms of myrtenal on experimental rats. 2
Kaufmann, D., Dogra, A. K., & Wink, M. (2011). Myrtenal inhibits acetylcholinesterase, a known Alzheimer target. Journal of Pharmacy and Pharmacology, 63(10), 1368–1371.
pubmed: 21899553
doi: 10.1111/j.2042-7158.2011.01344.x
Corin, K., Baaske, P., Geissler, S., Wienken, C. J., Duhr, S., Braun, D., & Zhang, S. (2011). Structure and function analyses of the purified GPCR human vomeronasal type 1 receptor 1. Science and Reports, 1, 172.
doi: 10.1038/srep00172
Dragomanova, S., Klisurov, R., Georgieva, M., Lazarova, M., Dishovsky, C., Kalfin, R., et al. (2018). Effect of myrtenal on social behavior and memory of rats. 10th Congress of Toxicology in Developing Countries (CTDC10), 18–21 April, Belgrade, Serbia.
Li, W. X., Qian, P., Guo, Y. T., Gu, L., Jurat, J., Bai, Y., & Zhang, D. F. (2021). Myrtenal and β-caryophyllene oxide screened from Liquidambaris Fructus suppress NLRP3 inflammasome components in rheumatoid arthritis. BMC Complement Med Ther, 21(1), 242.
pubmed: 34583676
pmcid: 8480017
doi: 10.1186/s12906-021-03410-2
Ayyasamy, R., & Leelavinothan, P. (2016). Myrtenal alleviates hyperglycaemia, hyperlipidaemia and improves pancreatic insulin level in STZ-induced diabetic rats. Pharmaceutical Biology, 54(11), 2521–2527.
pubmed: 27158912
doi: 10.3109/13880209.2016.1168852
Rathinam, A., & Pari, L. (2016). Myrtenal ameliorates hyperglycemia by enhancing GLUT2 through Akt in the skeletal muscle and liver of diabetic rats. Chemico-Biological Interactions, 256, 161–166.
pubmed: 27417257
doi: 10.1016/j.cbi.2016.07.009
Papandreou, D., & Hamid, Z. T. (2015). The role of vitamin d in diabetes and cardiovascular disease: An updated review of the literature. Disease Markers, 2015, 580474.
pubmed: 26576069
pmcid: 4630385
doi: 10.1155/2015/580474
Edwards, C. A., & O’Brien, W. D. (1980). Modified assay for determination of hydroxypro-line in a tissue hydrolyzate. Clinica Chimica Acta, 104, 161–167.
doi: 10.1016/0009-8981(80)90192-8
Lowry, O. H., Rosebrough, N. J., Farr, A. L., et al. (1951). Protein measurements with the folinphenol reagent. Journal of Biological Chemistry, 193, 265–275.
pubmed: 14907713
doi: 10.1016/S0021-9258(19)52451-6
Rao, A. V., Ramakrishnan, S., Indirect assessment of hydroxylmethylglutaryl-CoAreductase (NADPH) activity in liver. Clin Chem, 21, 1523–1525.
Itaya, K. (1977). A more sensitive and stable colorimetric determination of free fatty acidsin blood. Journal of Lipid Research, 18, 663–665.
pubmed: 903712
doi: 10.1016/S0022-2275(20)41609-8
Onat, A., Can, G., Kaya, H., et al. (2010). Atherogenic index of plasma (log10 (triglyceride/high density lipoprotein cholesterol) predicts high blood pressure, diabetes, and vascular events. Journal of Clinical Lipidology, 4, 89–98.
pubmed: 21122635
doi: 10.1016/j.jacl.2010.02.005
Miura, Y., & Suzuki, H. (2019). Dyslipidemia and atherosclerotic carotid artery stenosis. Vessel Plus, 3, 1.
Shrivastava, A., Chaturvedi, U., Singh, S. V., Saxena, J. K., & Bhatia, G. (2013). Lipid lowering and antioxidant effect of miglitol in triton treated hyperlipidemic and high fat diet induced obese rats. Lipids, 48(6), 597–607.
pubmed: 23334955
doi: 10.1007/s11745-012-3753-3
Gianazza, E., Brioschi, M., Fernandez, A. M., & Banfi, C. (2019). Lipoxidation in cardiovascular diseases. Redox Biol, 23, 101119.
pubmed: 30833142
pmcid: 6859589
doi: 10.1016/j.redox.2019.101119
Khatana, C., Saini, N. K., Chakrabarti, S., Saini, V., Sharma, A., Saini, R. V., Saini, A. K. (2020). Mechanistic insights into the oxidized low-density lipoprotein-induced atherosclerosis. Oxidative Medicine and Cellular Longevity, 2020.
Hoenig, M. R. (2008). Implications of the obesity epidemic for lipid-lowering therapy: Non-HDL cholesterol should replace LDL cholesterol as the primary therapeutic target. Vasc Health Risk Manag, 4(1), 143–156.
pubmed: 18629364
pmcid: 2464759
doi: 10.2147/vhrm.2008.04.01.143
Xiao, C. W., Wood, C. M., Swist, E., Nagasaka, R., Sarafin, K., Gagnon, C., Fernandez, L., Faucher, S., Wu, H. X., Kenney, L., & Ratnayake, W. M. (2016). Cardio-metabolic disease risks and their associations with circulating 25-hydroxyvitamin D and omega-3 levels in South Asian and White Canadians. PLoS ONE, 11(1), e0147648.
pubmed: 26809065
pmcid: 4725777
doi: 10.1371/journal.pone.0147648
Zaric, B. L., Radovanovic, J. N., Gluvic, Z., Stewart, A. J., Essack, M., Motwalli, O., Gojobori, T., & Isenovic, E. R. (2020). Atherosclerosis linked to aberrant amino acid metabolism and immunosuppressive amino acid catabolizing enzymes. Frontiers in Immunology, 11, 551758.
pubmed: 33117340
pmcid: 7549398
doi: 10.3389/fimmu.2020.551758
Subramani, C., Rajakkannu, A., Rathinam, A., Gaidhani, S., Raju, I., Kartar Singh, D. V. (2017). Anti-atherosclerotic activity of root bark of Premna integrifolia Linn. in high fat diet induced atherosclerosis model rats. J Pharm Anal, 7(2), 123–128.
Abdelhalim, M. A., Siiddiqi, N. J., Alhomida, A. S., & Al-Ayed, M. S. (2008). Effects of feeding periods of high cholesterol and saturated fat diet on blood biochemistry and hydroxyproline fractions in rabbits. Bioinformatics and Biology Insights, 2, 95–100.
pubmed: 19812768
pmcid: 2735948
doi: 10.4137/BBI.S445
Kontush, A., Lhomme, M., & Chapman, M. J. (2013). Unraveling the complexities of the HDL lipidome. Journal of Lipid Research, 54(11), 2950–2963.
pubmed: 23543772
pmcid: 3793600
doi: 10.1194/jlr.R036095
Misra, B. B., Puppala, S. R., Comuzzie, A. G., Mahaney, M. C., VandeBerg, J. L., Olivier, M., & Cox, L. A. (2019). Analysis of serum changes in response to a high-fat high cholesterol diet challenge reveals metabolic biomarkers of atherosclerosis. PLoS ONE, 14(4), e0214487.
pubmed: 30951537
pmcid: 6450610
doi: 10.1371/journal.pone.0214487
Wu, Y., Pan, N., An, Y., Xu, M., Tan, L., & Zhang, L. (2021). Diagnostic and prognostic biomarkers for myocardial infarction. Front Cardiovasc Med, 7, 617277.
pubmed: 33614740
pmcid: 7886815
doi: 10.3389/fcvm.2020.617277
Parsanathan, R., & Jain, S. K. (2019). Novel invasive and noninvasive cardiac-specific biomarkers in obesity and cardiovascular diseases. Metabolic Syndrome and Related Disorders, 18(1), 10–30.
pubmed: 31618136
doi: 10.1089/met.2019.0073
Hesari, M., Mohammadi, P., Khademi, F., Shackebaei, D., Momtaz, S., Moasefi, N., Farzaei, M. H., & Abdollahi, M. (2021). Current advances in the use of nanophytomedicine therapies for human cardiovascular diseases. International Journal of Nanomedicine, 16, 3293–3315.
pubmed: 34007178
pmcid: 8123960
doi: 10.2147/IJN.S295508
Burnstock, G., & Pelleg, A. (2015). Cardiac purinergic signalling in health and disease. Purinergic Signal, 11(1), 1–46.
pubmed: 25527177
doi: 10.1007/s11302-014-9436-1
Tan, B. L., & Norhaizan, M. E. (2019). Effect of high-fat diets on oxidative stress, cellular inflammatory response and cognitive function. Nutrients, 11(11), 2579.
pubmed: 31731503
pmcid: 6893649
doi: 10.3390/nu11112579
Li, B., Xia, Y., & Hu, B. (2020). Infection and atherosclerosis: TLR-dependent pathways. Cellular and Molecular Life Sciences, 77(14), 2751–2769.
pubmed: 32002588
pmcid: 7223178
doi: 10.1007/s00018-020-03453-7
Schumacher, M. M., Jun, D. J., Johnson, B. M., & DeBose-Boyd, R. A. (2018). UbiA prenyltransferase domain-containing protein-1 modulates HMG-CoA reductase degradation to coordinate synthesis of sterol and nonsterol isoprenoids. Journal of Biological Chemistry, 293(1), 312–323.
pubmed: 29167270
doi: 10.1074/jbc.RA117.000423
Smith, L. R., & Barton, E. R. (2014). Collagen content does not alter the passive mechanical properties of fibrotic skeletal muscle in mdx mice. American Journal of Physiology. Cell Physiology, 306(10), C889–C898.
pubmed: 24598364
pmcid: 4024713
doi: 10.1152/ajpcell.00383.2013
Saigusa, R., Winkels, H., & Ley, K. (2020). T cell subsets and functions in atherosclerosis. Nature Reviews. Cardiology, 17(7), 387–401.
pubmed: 32203286
pmcid: 7872210
doi: 10.1038/s41569-020-0352-5
Bäck, M., Yurdagul, A., Tabas, I., Öörni, K., & Kovanen, P. T. (2019). Inflammation and its resolution in atherosclerosis: Mediators and therapeutic opportunities. Nature Reviews. Cardiology, 16(7), 389–406.
pubmed: 30846875
pmcid: 6727648
Cheng, Z., Jia, W., Tian, X., Jiang, P., Zhang, Y., Li, J., Tian, C., Liu, J. (2020). Cotinine inhibits TLR4/NF-κB signaling pathway and improves deep vein thrombosis in rats. Biosci Rep, 40(6), BSR20201293.