Transcriptome Comparison Reveals the Difference in Liver Fat Metabolism between Different Sheep Breeds.

RNA-seq fat metabolism liver sheep

Journal

Animals : an open access journal from MDPI
ISSN: 2076-2615
Titre abrégé: Animals (Basel)
Pays: Switzerland
ID NLM: 101635614

Informations de publication

Date de publication:
27 Jun 2022
Historique:
received: 26 04 2022
revised: 09 06 2022
accepted: 23 06 2022
entrez: 9 7 2022
pubmed: 10 7 2022
medline: 10 7 2022
Statut: epublish

Résumé

Hu sheep and Tibetan sheep are two commonly raised local sheep breeds in China, and they have different morphological characteristics, such as tail type and adaptability to extreme environments. A fat tail in sheep is the main adipose depot in sheep, whereas the liver is an important organ for fat metabolism, with the uptake, esterification, oxidation, and secretion of fatty acids (FAs). Meanwhile, adaptations to high-altitude and arid environments also affect liver metabolism. Therefore, in this study, RNA-sequencing (RNA-seq) technology was used to characterize the difference in liver fat metabolism between Hu sheep and Tibetan sheep. We identified 1179 differentially expressed genes (DEGs) (Q-value < 0.05) between the two sheep breeds, including 25 fat-metabolism-related genes. Through Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, 16 pathways were significantly enriched (Q-value < 0.05), such as the proteasome, glutamatergic synapse, and oxidative phosphorylation pathways. In particular, one of these pathways was enriched to be associated with fat metabolism, namely the thermogenesis pathway, to which fat-metabolism-related genes such as ACSL1, ACSL4, ACSL5, CPT1A, CPT1C, SLC25A20, and FGF21 were enriched. Then, the expression levels of ACSL1, CPT1A, and FGF21 were verified in mRNA and protein levels via qRT-PCR and Western blot analysis between the two sheep breeds. The results showed that the mRNA and protein expression levels of these three genes were higher in the livers of Tibetan sheep than those of Hu sheep. The above genes are mainly related to FAs oxidation, involved in regulating the oxidation of liver FAs. So, this study suggested that Tibetan sheep liver has a greater FAs oxidation level than Hu sheep liver. In addition, the significant enrichment of fat-metabolism-related genes in the thermogenesis pathway appears to be related to plateau-adaptive thermogenesis in Tibetan sheep, which may indicate that liver- and fat-metabolism-related genes have an impact on adaptive thermogenesis.

Identifiants

pubmed: 35804549
pii: ani12131650
doi: 10.3390/ani12131650
pmc: PMC9265030
pii:
doi:

Types de publication

Journal Article

Langues

eng

Subventions

Organisme : the China Agriculture Research System of MOF and MARA
ID : CARS-38

Références

Sci Rep. 2019 Jun 24;9(1):9203
pubmed: 31235755
Biochem Biophys Res Commun. 2011 Jun 17;409(4):699-704
pubmed: 21619872
Clin Endocrinol (Oxf). 2013 Apr;78(4):489-96
pubmed: 23134073
J Biol Chem. 2011 Apr 15;286(15):12983-90
pubmed: 21317437
Arterioscler Thromb Vasc Biol. 2012 May;32(5):1079-86
pubmed: 22517366
Genetics. 2013 Nov;195(3):1157-66
pubmed: 24026101
Cell Metab. 2010 Mar 3;11(3):206-12
pubmed: 20197053
Diabetes. 2015 Sep;64(9):3135-45
pubmed: 25972572
Biomolecules. 2021 Mar 31;11(4):
pubmed: 33807231
Gastroenterology. 2014 Nov;147(5):1073-83.e6
pubmed: 25083607
Hepatology. 2016 Aug;64(2):425-38
pubmed: 26926384
Cell Metab. 2017 Sep 5;26(3):454-455
pubmed: 28877451
Nat Biotechnol. 2010 May;28(5):511-5
pubmed: 20436464
Mol Med. 2011;17(7-8):736-40
pubmed: 21373720
Proc Natl Acad Sci U S A. 2006 May 9;103(19):7282-7
pubmed: 16651524
Trends Endocrinol Metab. 2019 Aug;30(8):491-504
pubmed: 31248786
Genome Biol. 2014;15(12):550
pubmed: 25516281
J Lipid Res. 2010 Nov;51(11):3270-80
pubmed: 20798351
Cell. 2012 Jul 20;150(2):366-76
pubmed: 22796012
J Biol Chem. 1990 May 25;265(15):8681-5
pubmed: 2341402
PLoS One. 2016 Jun 23;11(6):e0157480
pubmed: 27336699
Genome. 2020 Apr;63(4):203-214
pubmed: 31928416
J Biol Chem. 2012 Jun 15;287(25):21224-32
pubmed: 22539351
Biosci Rep. 2016 Feb 02;36(2):
pubmed: 26839416
J Dairy Sci. 2012 Apr;95(4):1759-66
pubmed: 22459824
Front Genet. 2021 Apr 08;12:639030
pubmed: 33897762
J Lipid Res. 1996 May;37(5):907-25
pubmed: 8725145
Diabetes. 2016 Apr;65(4):902-12
pubmed: 26858359
J Inherit Metab Dis. 2010 Oct;33(5):469-77
pubmed: 20195903
Nat Rev Gastroenterol Hepatol. 2017 Jun;14(6):343-355
pubmed: 28428634
J Biol Chem. 2007 Jun 22;282(25):18212-18224
pubmed: 17452323
BMC Bioinformatics. 2011 Aug 04;12:323
pubmed: 21816040
Genome Biol. 2010;11(10):R106
pubmed: 20979621
Metabolism. 2015 Mar;64(3):380-90
pubmed: 25516477
Gene. 2018 Nov 15;676:86-94
pubmed: 29958950
Genet Sel Evol. 2017 Jan 10;49(1):6
pubmed: 28073357
BMC Genomics. 2018 May 8;19(1):338
pubmed: 29739312
Annu Rev Nutr. 2014;34:1-30
pubmed: 24819326
Acta Pharm Sin B. 2019 Mar;9(2):220-236
pubmed: 30976490
J Biol Chem. 2009 Oct 9;284(41):27816-27826
pubmed: 19648649
J Biol Chem. 2006 Jan 13;281(2):945-50
pubmed: 16263710
Cell Metab. 2013 May 7;17(5):779-89
pubmed: 23663741
Curr Opin Lipidol. 2018 Jun;29(3):180-185
pubmed: 29718003
Proc Natl Acad Sci U S A. 2007 Oct 23;104(43):17075-80
pubmed: 17940018
Genes (Basel). 2020 Apr 30;11(5):
pubmed: 32365888
Annu Rev Physiol. 2016;78:223-41
pubmed: 26654352
Mol Genet Metab. 2000 Sep-Oct;71(1-2):139-53
pubmed: 11001805
Sci Adv. 2017 Aug 16;3(8):e1700677
pubmed: 28835921
Prostaglandins Other Lipid Mediat. 2019 Oct;144:106363
pubmed: 31306767
Am J Physiol Endocrinol Metab. 2006 Oct;291(4):E737-44
pubmed: 16705061
Compr Physiol. 2017 Dec 12;8(1):1-8
pubmed: 29357123
J Lipid Res. 2006 Sep;47(9):2004-10
pubmed: 16772660
Gene. 2013 May 25;521(1):122-8
pubmed: 23523858
Genes (Basel). 2020 Nov 16;11(11):
pubmed: 33207796
Gene. 2019 Feb 20;686:92-103
pubmed: 30321659
Cell Metab. 2017 Sep 5;26(3):509-522.e6
pubmed: 28877455
Trends Endocrinol Metab. 2015 Jan;26(1):22-9
pubmed: 25476453
Endocrinology. 2020 Feb 1;161(2):
pubmed: 31900483
FASEB J. 2018 May;32(5):2630-2643
pubmed: 29295856
Oncol Lett. 2018 Aug;16(2):1390-1396
pubmed: 30008815
BMC Genomics. 2019 Jul 23;20(1):604
pubmed: 31337347
BMC Bioinformatics. 2020 Nov 11;21(1):518
pubmed: 33176676
Genet Mol Res. 2016 May 20;15(2):
pubmed: 27323054
J Biol Chem. 2000 Sep 8;275(36):28083-92
pubmed: 10846185
Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9691-6
pubmed: 21593415
Genes Dev. 2012 Feb 1;26(3):271-81
pubmed: 22302939

Auteurs

Taotao Li (T)

Key Laboratory of Animal Genetics and Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

Meilin Jin (M)

Key Laboratory of Animal Genetics and Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

Xiaojuan Fei (X)

Key Laboratory of Animal Genetics and Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

Zehu Yuan (Z)

Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China.

Yuqin Wang (Y)

College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China.

Kai Quan (K)

College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China.

Tingpu Wang (T)

College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui 741000, China.

Junxiang Yang (J)

Gansu Institute of Animal Husbandry and Veterinary Medicine, Pingliang 744000, China.

Maochang He (M)

Gansu Institute of Animal Husbandry and Veterinary Medicine, Pingliang 744000, China.

Caihong Wei (C)

Key Laboratory of Animal Genetics and Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

Classifications MeSH