Protein Hydrolysates Derived from Animals and Plants-A Review of Production Methods and Antioxidant Activity.
animals
antioxidant activity
bioactive peptides
enzymatic hydrolysis
plants
protein hydrolysates
Journal
Foods (Basel, Switzerland)
ISSN: 2304-8158
Titre abrégé: Foods
Pays: Switzerland
ID NLM: 101670569
Informations de publication
Date de publication:
30 Jun 2022
30 Jun 2022
Historique:
received:
18
05
2022
revised:
25
06
2022
accepted:
26
06
2022
entrez:
9
7
2022
pubmed:
10
7
2022
medline:
10
7
2022
Statut:
epublish
Résumé
There is currently considerable interest on the use of animal, plant, and fungal sources in the production of bioactive peptides, as evidenced by the substantial body of research on the topic. Such sources provide cheap and environmentally friendly material as it often includes waste and by-products. Enzymatic hydrolysis is considered an efficient method of obtaining peptides capable of antioxidant activity. Those properties have been proven in terms of radical-scavenging capacity using the DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS (2,2-azinobis-(3-ethyl-benzothiazoline-6-sulphonic acid)), hydroxyl and superoxide radical methods. Additionally, the reducing power, ferrous ion-chelating (FIC), ferric reducing antioxidant power (FRAP), and the ability of the protein hydrolysates to inhibit lipid peroxidation have also been explored. The results collected in this review clearly indicate that the substrate properties, as well as the conditions under which the hydrolysis reaction is carried out, affect the final antioxidant potential of the obtained peptides. This is mainly due to the structural properties of the obtained compounds such as size or amino acid sequences.
Identifiants
pubmed: 35804767
pii: foods11131953
doi: 10.3390/foods11131953
pmc: PMC9266099
pii:
doi:
Types de publication
Journal Article
Review
Langues
eng
Références
Food Chem. 2014 Feb 15;145:34-40
pubmed: 24128446
J Agric Food Chem. 2017 Nov 29;65(47):10174-10184
pubmed: 29096438
Food Chem. 2017 Jan 1;214:460-467
pubmed: 27507499
Poult Sci. 2018 May 1;97(5):1824-1831
pubmed: 29471508
Food Chem. 2019 Jan 1;270:243-250
pubmed: 30174041
J Food Sci Technol. 2017 Dec;54(13):4268-4276
pubmed: 29184233
Food Res Int. 2018 Mar;105:836-844
pubmed: 29433280
Mar Drugs. 2017 Oct 13;15(10):
pubmed: 29027934
Antioxidants (Basel). 2016 Sep 20;5(3):
pubmed: 27657142
J Sci Food Agric. 2017 Jul;97(9):2834-2841
pubmed: 27786357
Food Res Int. 2017 Oct;100(Pt 1):121-133
pubmed: 28873670
Food Funct. 2020 Apr 30;11(4):3539-3548
pubmed: 32255460
Pak J Pharm Sci. 2016 Nov;29(6):1893-1900
pubmed: 28375103
J Sci Food Agric. 2018 Mar;98(4):1407-1415
pubmed: 28771748
Int J Mol Med. 2017 Sep;40(3):784-800
pubmed: 28713910
Bioresour Technol. 2008 Apr;99(6):1690-8
pubmed: 17512726
Food Chem. 2014 Jul 1;154:158-63
pubmed: 24518328
J Food Sci Technol. 2018 Jan;55(1):265-277
pubmed: 29358819
Peptides. 2010 Oct;31(10):1949-56
pubmed: 20600423
Mar Drugs. 2017 May 05;15(5):
pubmed: 28475143
Acta Biochim Pol. 2017;64(2):245-253
pubmed: 28388696
Food Res Int. 2017 Oct;100(Pt 1):423-432
pubmed: 28873705
Food Funct. 2017 Dec 13;8(12):4384-4395
pubmed: 29068450
Food Res Int. 2017 Oct;100(Pt 1):416-422
pubmed: 28873704
3 Biotech. 2017 Jul;7(3):218
pubmed: 28674843
Mar Biotechnol (NY). 2018 Apr;20(2):118-130
pubmed: 29532335
Int J Mol Med. 2017 Jun;39(6):1437-1451
pubmed: 28487991
J Food Drug Anal. 2017 Jul;25(3):567-575
pubmed: 28911643
Mar Drugs. 2017 Apr 10;15(4):
pubmed: 28394291
J Agric Food Chem. 2017 Dec 27;65(51):11192-11201
pubmed: 29190426
Int J Mol Med. 2017 May;39(5):1072-1082
pubmed: 28393188
Food Chem. 2017 Oct 1;232:753-762
pubmed: 28490137
Plant Foods Hum Nutr. 2016 Jun;71(2):174-82
pubmed: 27023251
Biotechnol Rep (Amst). 2016 Aug 30;11:99-109
pubmed: 28352546
Food Chem. 2016 Aug 1;204:365-372
pubmed: 26988514
J Food Sci Technol. 2018 Feb;55(2):721-729
pubmed: 29391637
Food Chem. 2014 May 1;150:366-73
pubmed: 24360464
Food Chem. 2018 Oct 30;264:326-333
pubmed: 29853383
Food Chem. 2018 Jun 1;250:162-169
pubmed: 29412907
Food Chem. 2018 Feb 1;240:156-164
pubmed: 28946256
J Food Sci Technol. 2017 May;54(6):1442-1454
pubmed: 28559603
Acta Sci Pol Technol Aliment. 2014 Oct-Dec;13(4):385-391
pubmed: 28067480
Food Chem. 2017 Sep 1;230:58-67
pubmed: 28407953
Food Chem. 2018 Apr 15;245:89-96
pubmed: 29287456
J Agric Food Chem. 2008 Aug 27;56(16):7459-66
pubmed: 18662014
Molecules. 2018 May 16;23(5):
pubmed: 29772679
Nutrients. 2017 Sep 02;9(9):
pubmed: 28869499
J Food Sci Technol. 2015 Sep;52(9):5817-25
pubmed: 26344996
Saudi J Biol Sci. 2014 Jan;21(1):19-26
pubmed: 24596496
Anal Bioanal Chem. 2018 Jun;410(15):3573-3586
pubmed: 29476230
J Food Sci Technol. 2017 Dec;54(13):4162-4172
pubmed: 29184221
Food Chem. 2015 Apr 15;173:652-9
pubmed: 25466072
PLoS One. 2018 Feb 6;13(2):e0191265
pubmed: 29408872
J Food Sci Technol. 2017 Dec;54(13):4257-4267
pubmed: 29184232
J Sci Food Agric. 2017 Dec;97(15):5414-5422
pubmed: 28508436
Biomed Res Int. 2017;2017:2121878
pubmed: 29181389
Food Chem. 2014 Mar 15;147:78-83
pubmed: 24206688
Food Chem. 2012 Oct 1;134(3):1360-7
pubmed: 25005954
Adv Food Nutr Res. 2017;81:109-159
pubmed: 28317603
PLoS One. 2018 Mar 1;13(3):e0193717
pubmed: 29494663
J Dairy Sci. 2018 Jan;101(1):47-60
pubmed: 29128226
J Food Sci Technol. 2017 Sep;54(10):3102-3110
pubmed: 28974795
Biomed Environ Sci. 2017 Sep;30(9):623-631
pubmed: 29081336
J Food Sci. 2014 Mar;79(3):R273-83
pubmed: 24547749