Spectroscopic Characteristics and Speciation Distribution of Fe(III) Binding to Molecular Weight-Dependent Standard Pahokee Peat Fulvic Acid.
Donnan Membrane Technique
Pahokee Peat fulvic acid
complexation
dissolved organic matter
fluorescence
iron
ultraviolet–visible
Journal
International journal of environmental research and public health
ISSN: 1660-4601
Titre abrégé: Int J Environ Res Public Health
Pays: Switzerland
ID NLM: 101238455
Informations de publication
Date de publication:
26 06 2022
26 06 2022
Historique:
received:
25
05
2022
revised:
22
06
2022
accepted:
23
06
2022
entrez:
9
7
2022
pubmed:
10
7
2022
medline:
14
7
2022
Statut:
epublish
Résumé
Peat-derived organic matter, as powerful chelators, is of great significance for the transport of Fe to the ocean and the enhancement of dissolved Fe. However, the iron binding capacity of molecular weight (MW)-fractionated dissolved organic matter is variable, due to its structure and composition heterogeneity. In this work, we used the standard Pahokee Peat fulvic acid (PPFA) as an example, and investigated the spectroscopy properties and Fe(III) binding ability of PPFA and different molecular weight fractions by UV−Vis absorbance and fluorescence spectroscopy and the Donnan Membrane Technique (DMT). The results showed binding sites for Fe(III) at the 263 nm and >320 nm regions in differential absorbance spectra. Upon increasing the iron concentration to 18.00 μmol·L−1, the critical binding capacity was exceeded, which resulted in a decrease in absorbance. Fe(III) was found to prefer to bind to humic-like components, and ultraviolet humic-like fluorophores displayed stronger binding strength. High molecular weight PPFA fractions (>10 kDa) possessed more aromatic and hydrophobic components, displayed a higher degree of humification, and exhibited higher metal binding potential. Furthermore, the speciation analysis and stability constant (cK) were calculated using Donnan membrane equilibrium. The correlation between cK values and PPFA spectral properties demonstrated that aromaticity, hydrophobicity, molecular weight and humification degree were crucial indices of PPFA−Fe(III) affinity. Significantly, the humification degree, represented by HIX, showed the strongest correlation (r = 0.929, p = 0.003), which could be used to estimate the binding strength. This study provides further understanding of the complexation mechanism of iron and DOM in the peat environment and identifies the considerable effect of molecular weight.
Identifiants
pubmed: 35805509
pii: ijerph19137838
doi: 10.3390/ijerph19137838
pmc: PMC9266197
pii:
doi:
Substances chimiques
Benzopyrans
0
Ferric Compounds
0
Humic Substances
0
Soil
0
Iron
E1UOL152H7
fulvic acid
XII14C5FXV
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Références
Environ Sci Technol. 1995 Feb 1;29(2):446-57
pubmed: 22201392
Environ Sci Pollut Res Int. 2016 Dec;23(23):24061-24067
pubmed: 27638806
Sci Total Environ. 2020 Mar 15;708:135051
pubmed: 31796279
Chemosphere. 2020 Dec;261:128189
pubmed: 33113651
Environ Sci Technol. 2014 Apr 15;48(8):4414-24
pubmed: 24635730
Mar Chem. 2015 Aug 20;174:85-93
pubmed: 26412934
Sci Total Environ. 2016 Jun 15;556:53-62
pubmed: 26971209
Sci Total Environ. 2021 Nov 25;797:149173
pubmed: 34303988
Chemosphere. 2017 May;175:307-314
pubmed: 28235739
Sci Total Environ. 2010 May 1;408(11):2402-8
pubmed: 20206963
Environ Sci Technol. 2011 Apr 15;45(8):3196-201
pubmed: 21405118
Sci Total Environ. 2016 Jan 15;541:623-637
pubmed: 26433328
Water Res. 2002 Oct;36(17):4215-26
pubmed: 12420926
Water Res. 2002 Dec;36(20):5037-44
pubmed: 12448552
Proc Natl Acad Sci U S A. 2013 Jun 18;110(25):10101-5
pubmed: 23733946
Water Res. 2013 Feb 1;47(2):588-96
pubmed: 23174533
Sci Total Environ. 2019 May 15;665:828-835
pubmed: 30790755
Environ Sci Technol. 2021 Jul 20;55(14):9672-9690
pubmed: 34251212
J Environ Manage. 2020 Jun 1;263:110396
pubmed: 32174533
Sci Total Environ. 2016 Mar 15;547:104-113
pubmed: 26780135
J Environ Sci (China). 2018 Dec;74:116-125
pubmed: 30340665
Chemosphere. 2013 May;91(7):1042-8
pubmed: 23499223
Environ Sci Technol. 2002 Feb 15;36(4):742-6
pubmed: 11878392
Chemosphere. 2013 Jul;92(4):351-9
pubmed: 23422174
Food Chem. 2018 Jan 15;239:1143-1150
pubmed: 28873533
Sci Total Environ. 2021 Dec 15;800:149476
pubmed: 34426326
Angew Chem Weinheim Bergstr Ger. 2016 May 23;128(22):6527-6532
pubmed: 27478277
Sci Total Environ. 2019 Jan 1;646:972-988
pubmed: 30235650
Sci Total Environ. 2017 Jan 15;576:36-45
pubmed: 27780098
Water Res. 2015 Sep 15;81:47-53
pubmed: 26043370
Sci Total Environ. 2022 Feb 10;807(Pt 3):150979
pubmed: 34687708
Ecotoxicol Environ Saf. 2021 Jan 1;207:111545
pubmed: 33254404
Environ Sci Technol. 2003 Dec 15;37(24):5701-10
pubmed: 14717183
Sci Total Environ. 2012 Apr 1;421-422:238-44
pubmed: 22341403
Environ Sci Technol. 2003 Oct 15;37(20):4702-8
pubmed: 14594381
Environ Sci Technol. 2017 Mar 21;51(6):3214-3222
pubmed: 28218520
Environ Sci Technol. 2011 Apr 1;45(7):2584-90
pubmed: 21405071
Environ Sci Technol. 2003 Jan 1;37(1):18A-26A
pubmed: 12542280
Chemosphere. 2021 Aug;276:130043
pubmed: 33706178
Water Res. 2016 Apr 15;93:84-90
pubmed: 26900969
Water Res. 2001 May;35(7):1793-803
pubmed: 11329682
Environ Sci Technol. 2014 Sep 2;48(17):10098-106
pubmed: 25084347
Environ Sci Technol. 2015 Jun 2;49(11):6581-9
pubmed: 25941838
Water Res. 2013 May 1;47(7):2603-11
pubmed: 23490103