Dipotassium Glycyrrhizinate on Melanoma Cell Line: Inhibition of Cerebral Metastases Formation by Targeting NF-kB Genes-Mediating MicroRNA-4443 and MicroRNA-3620-Dipotassium Glycyrrhizinate Effect on Melanoma.
CD209
Dipotassium Glycyrrhizinate
NF-kB pathway inhibition
TCN genes modulation
anti-migratory effect
melanoma cell line SK-MEL-28
miR-4443 and miR-3620
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
29 Jun 2022
29 Jun 2022
Historique:
received:
25
04
2022
revised:
19
05
2022
accepted:
21
05
2022
entrez:
9
7
2022
pubmed:
10
7
2022
medline:
14
7
2022
Statut:
epublish
Résumé
Glycyrrhizic acid (GA), a natural compound isolated from licorice (Glycyrrhiza glabra), has exhibited anti-inflammatory and anti-tumor effects in vitro. Dipotassium glycyrrhizinate (DPG), a dipotassium salt of GA, also has shown an anti-tumor effect on glioblastoma cell lines, U87MG and T98G. The study investigated the DPG effects in the melanoma cell line (SK-MEL-28). MTT assay demonstrated that the viability of the cells was significantly decreased in a time- and dose-dependent manner after DPG (IC50 = 36 mM; 24 h). DNA fragmentation suggested that DPG (IC50) induced cellular apoptosis, which was confirmed by a significant number of TUNEL-positive cells (p-value = 0.048) and by PARP-1 [0.55 vs. 1.02 arbitrary units (AUs), p-value = 0.001], BAX (1.91 vs. 1.05 AUs, p-value = 0.09), and BCL-2 (0.51 vs. 1.07 AUs, p-value = 0.0018) mRNA compared to control cells. The proliferation and wound-healing assays showed an anti-proliferative effect on DPG-IC50-treated cells, also indicating an inhibitory effect on cell migration (p-values < 0.001). Moreover, it was observed that DPG promoted a 100% reduction in melanospheres formation (p-value = 0.008). Our previous microRNAs (miRs) global analysis has revealed that DPG might increase miR-4443 and miR-3620 expression levels. Thus, qPCR showed that after DPG treatment, SK-MEL-28 cells presented significantly high miR-4443 (1.77 vs. 1.04 AUs, p-value = 0.02) and miR-3620 (2.30 vs. 1.00 AUs, p-value = 0.01) expression compared to control cells, which are predicted to target the NF-kB, CD209 and TNC genes, respectively. Both genes are responsible for cell attachment and migration, and qPCR revealed significantly decreased CD209 (1.01 vs. 0.54 AUs, p-value = 0.018) and TNC (1.00 vs. 0.31 AUs, p-value = 2.38 × 10−6) mRNA expression levels after DPG compared to untreated cells. Furthermore, the migration of SK-MEL-28 cells stimulated by 12-O-tetradecanoylphorbol-13-acetate (TPA) was attenuated by adding DPG by wound-healing assay (48 h: p-value = 0.004; 72 h: p-value = 7.0 × 10−4). In addition, the MMP-9 expression level was inhibited by DPG in melanoma cells stimulated by TPA and compared to TPA-treated cells (3.56 vs. 0.99 AUs, p-value = 0.0016) after 24 h of treatment. Our results suggested that DPG has an apoptotic, anti-proliferative, and anti-migratory effect on SK-MEL-28 cells. DPG was also able to inhibit cancer stem-like cells that may cause cerebral tumor formation.
Identifiants
pubmed: 35806253
pii: ijms23137251
doi: 10.3390/ijms23137251
pmc: PMC9266887
pii:
doi:
Substances chimiques
MIRN-4443 microRNA, human
0
MicroRNAs
0
NF-kappa B
0
RNA, Messenger
0
Glycyrrhizic Acid
6FO62043WK
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : São Paulo Research Foundation
ID : 2015/03870-1
Organisme : São Paulo Research Foundation
ID : Scholarships# 2018/05930-0
Organisme : Coordenação de Aperfeicoamento de Pessoal de Nível Superior
ID : Scholarships#88887.464813/2019-00
Références
Inflammation. 2001 Jun;25(3):157-63
pubmed: 11403206
Oncotarget. 2016 May 3;7(18):25162-79
pubmed: 27036017
Am J Physiol Cell Physiol. 2001 Oct;281(4):C1096-105
pubmed: 11546645
Food Chem Toxicol. 2015 Apr;78:33-41
pubmed: 25656647
J Coll Physicians Surg Pak. 2015 Sep;25(9):680-8
pubmed: 26374366
Int J Mol Med. 2005 Aug;16(2):233-6
pubmed: 16012754
Oncol Rep. 2008 Dec;20(6):1387-92
pubmed: 19020719
Arch Toxicol. 2013 May;87(5):857-69
pubmed: 23288142
Cell Adh Migr. 2015;9(1-2):125-30
pubmed: 25482624
Mol Med. 2003 May-Aug;9(5-8):143-53
pubmed: 14571322
Nat Rev Dis Primers. 2019 Jan 17;5(1):5
pubmed: 30655533
Biol Chem. 1999 Jul-Aug;380(7-8):953-9
pubmed: 10494847
Front Cell Neurosci. 2019 May 28;13:216
pubmed: 31191251
Oncogene. 2007 Mar 22;26(13):1954-8
pubmed: 17001349
Cell. 2000 Mar 3;100(5):575-85
pubmed: 10721994
Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3878-83
pubmed: 11891271
BMC Cancer. 2018 Jun 22;18(1):675
pubmed: 29929490
Biochem Biophys Res Commun. 2009 Oct 2;387(4):646-50
pubmed: 19619515
Neurol Clin. 2018 Aug;36(3):557-577
pubmed: 30072071
Int J Mol Med. 2006 Feb;17(2):215-9
pubmed: 16391818
Trends Pharmacol Sci. 2007 Nov;28(11):556-60
pubmed: 17950909
Cancer. 2011 Apr 15;117(8):1687-96
pubmed: 20960525
Pigment Cell Res. 2004 Apr;17(2):173-80
pubmed: 15016307
Curr Oncol Rep. 2012 Feb;14(1):48-54
pubmed: 22012633
Melanoma Res. 2012 Jun;22(3):215-24
pubmed: 22495670
BMC Cancer. 2018 Apr 27;18(1):490
pubmed: 29703161
J Clin Oncol. 2004 Feb 15;22(4):617-23
pubmed: 14966085
PLoS One. 2015 Aug 26;10(8):e0136669
pubmed: 26309255
J Leukoc Biol. 2002 Jun;71(6):921-31
pubmed: 12050176
Mol Cell. 2007 Jan 26;25(2):297-308
pubmed: 17244536
Methods. 2001 Dec;25(4):402-8
pubmed: 11846609
J Cell Physiol. 2010 Nov;225(2):472-81
pubmed: 20458747
Cell Mol Life Sci. 2002 Sep;59(9):1534-53
pubmed: 12440774
Cardiovasc Res. 2008 Apr 1;78(1):158-66
pubmed: 18093987
Mol Cell Biol. 2008 May;28(9):2860-71
pubmed: 18299389
Oncogene. 2003 Nov 20;22(52):8460-71
pubmed: 14627987