Effect of Nb Addition and Heat Input on Heat-Affected Zone Softening in High-Strength Low-Alloy Steel.
HAZ softening
fine-grain heat-affected zone (FGHAZ)
heat input
second phase precipitation
welding thermal simulation
Journal
Materials (Basel, Switzerland)
ISSN: 1996-1944
Titre abrégé: Materials (Basel)
Pays: Switzerland
ID NLM: 101555929
Informations de publication
Date de publication:
26 Jun 2022
26 Jun 2022
Historique:
received:
12
05
2022
revised:
21
06
2022
accepted:
22
06
2022
entrez:
9
7
2022
pubmed:
10
7
2022
medline:
10
7
2022
Statut:
epublish
Résumé
The effect of both Nb content and heat input on the softening phenomenon of the heat-affected zone (HAZ) of low-alloy high-strength steel was studied through welding thermal simulation experiments. The microstructure evolution, density variation of geometrically necessary dislocation, microhardness distribution and the second phase precipitation behavior in HAZ was characterized and analyzed by combining the optical microscope, scanning electron microscope, high-resolution transmission electron microscope with microhardness tests. The results showed that the softening appeared in the fine-grain HAZ (FGHAZ) of the low-alloy high-strength steel with the polygonal ferrite and bainite microstructure. With an increase in Nb content, the FGHAZ softening was inhibited even with high heat input; however, the hardness shows little variation. On the one hand, the increase in the Nb content increased the volume fraction of high-strength bainite in the FGHAZ. On the other hand, the remarkable strengthening was produced by the equally distributed precipitation nanoparticles. As a result, the two factors were the main reason for the solution of the FGHAZ softening problem in the low-alloyed high-strength steel with the mixed microstructure of ferrite and bainite.
Identifiants
pubmed: 35806627
pii: ma15134503
doi: 10.3390/ma15134503
pmc: PMC9267242
pii:
doi:
Types de publication
Journal Article
Langues
eng
Références
Materials (Basel). 2022 Jan 21;15(3):
pubmed: 35160739