Towards Perfect Ultra-Broadband Absorbers, Ultra-Narrow Waveguides, and Ultra-Small Cavities at Optical Frequencies.
metallic photonic crystals
position disordering
radius disordering
Journal
Nanomaterials (Basel, Switzerland)
ISSN: 2079-4991
Titre abrégé: Nanomaterials (Basel)
Pays: Switzerland
ID NLM: 101610216
Informations de publication
Date de publication:
21 Jun 2022
21 Jun 2022
Historique:
received:
24
05
2022
revised:
14
06
2022
accepted:
20
06
2022
entrez:
9
7
2022
pubmed:
10
7
2022
medline:
10
7
2022
Statut:
epublish
Résumé
In this study, we design ultra-broadband optical absorbers, ultra-narrow optical waveguides, and ultra-small optical cavities comprising two-dimensional metallic photonic crystals that tolerate fabrication imperfections such as position and radius disorderings. The absorbers containing gold rods show an absorption amplitude of more than 90% under 54% position disordering at 200<λ<530 nm. The absorbers containing silver rods show an absorptance of more than 90% under 54% position disordering at 200<λ<400 nm. B-type straight waveguides that contain four rows of silver rods exposed to air reveal normalized transmittances of 75% and 76% under 32% position and 60% radius disorderings, respectively. B-type L-shaped waveguides containing four rows of silver rods show 76% and 90% normalized transmittances under 32% position and 40% radius disorderings, respectively. B-type cavities containing two rings of silver rods reveal 70% and 80% normalized quality factors under 32% position and 60% radius disorderings, respectively.
Identifiants
pubmed: 35807967
pii: nano12132132
doi: 10.3390/nano12132132
pmc: PMC9268687
pii:
doi:
Types de publication
Journal Article
Langues
eng
Références
Sci Rep. 2022 May 12;12(1):7884
pubmed: 35552455
Opt Express. 2018 Jun 11;26(12):15819-15824
pubmed: 30114837
Science. 2011 Jan 21;331(6015):290-1
pubmed: 21252335
J Phys Chem Lett. 2020 Oct 1;11(19):8378-8385
pubmed: 32936635
ACS Appl Mater Interfaces. 2018 Apr 18;10(15):13226-13235
pubmed: 29569438
Plasmonics. 2016;11:941-951
pubmed: 27340380
Adv Mater. 2012 Feb 21;24(8):1101-5
pubmed: 22278944
Phys Rev Lett. 2019 Oct 18;123(16):163901
pubmed: 31702361
Sci Rep. 2019 Apr 15;9(1):6048
pubmed: 30988521
Opt Express. 2021 Oct 11;29(21):32951-32965
pubmed: 34809116
Opt Express. 2018 Mar 5;26(5):5686-5693
pubmed: 29529770
Nano Lett. 2014 Jul 9;14(7):3881-6
pubmed: 24885198
Opt Express. 2021 Sep 27;29(20):32105-32113
pubmed: 34615288
Materials (Basel). 2022 Mar 16;15(6):
pubmed: 35329652
Adv Mater. 2022 Apr;34(13):e2108884
pubmed: 34997633
Nature. 2009 Aug 27;460(7259):1110-2
pubmed: 19684572
Nano Lett. 2019 May 8;19(5):3238-3243
pubmed: 31009229
Science. 2021 Oct 29;374(6567):612-616
pubmed: 34709910
Sci Adv. 2017 Jul 12;3(7):e1700721
pubmed: 28706994
J Phys Chem Lett. 2020 Sep 3;11(17):7009-7014
pubmed: 32786818
Sci Rep. 2021 Apr 22;11(1):8684
pubmed: 33888777
Materials (Basel). 2022 May 23;15(10):
pubmed: 35629759
Opt Express. 2008 May 12;16(10):7181-8
pubmed: 18545422
Nature. 2002 May 2;417(6884):52-5
pubmed: 11986662
Nanoscale. 2018 Sep 20;10(36):17105-17111
pubmed: 30179242