Towards Perfect Ultra-Broadband Absorbers, Ultra-Narrow Waveguides, and Ultra-Small Cavities at Optical Frequencies.

metallic photonic crystals position disordering radius disordering

Journal

Nanomaterials (Basel, Switzerland)
ISSN: 2079-4991
Titre abrégé: Nanomaterials (Basel)
Pays: Switzerland
ID NLM: 101610216

Informations de publication

Date de publication:
21 Jun 2022
Historique:
received: 24 05 2022
revised: 14 06 2022
accepted: 20 06 2022
entrez: 9 7 2022
pubmed: 10 7 2022
medline: 10 7 2022
Statut: epublish

Résumé

In this study, we design ultra-broadband optical absorbers, ultra-narrow optical waveguides, and ultra-small optical cavities comprising two-dimensional metallic photonic crystals that tolerate fabrication imperfections such as position and radius disorderings. The absorbers containing gold rods show an absorption amplitude of more than 90% under 54% position disordering at 200<λ<530 nm. The absorbers containing silver rods show an absorptance of more than 90% under 54% position disordering at 200<λ<400 nm. B-type straight waveguides that contain four rows of silver rods exposed to air reveal normalized transmittances of 75% and 76% under 32% position and 60% radius disorderings, respectively. B-type L-shaped waveguides containing four rows of silver rods show 76% and 90% normalized transmittances under 32% position and 40% radius disorderings, respectively. B-type cavities containing two rings of silver rods reveal 70% and 80% normalized quality factors under 32% position and 60% radius disorderings, respectively.

Identifiants

pubmed: 35807967
pii: nano12132132
doi: 10.3390/nano12132132
pmc: PMC9268687
pii:
doi:

Types de publication

Journal Article

Langues

eng

Références

Sci Rep. 2022 May 12;12(1):7884
pubmed: 35552455
Opt Express. 2018 Jun 11;26(12):15819-15824
pubmed: 30114837
Science. 2011 Jan 21;331(6015):290-1
pubmed: 21252335
J Phys Chem Lett. 2020 Oct 1;11(19):8378-8385
pubmed: 32936635
ACS Appl Mater Interfaces. 2018 Apr 18;10(15):13226-13235
pubmed: 29569438
Plasmonics. 2016;11:941-951
pubmed: 27340380
Adv Mater. 2012 Feb 21;24(8):1101-5
pubmed: 22278944
Phys Rev Lett. 2019 Oct 18;123(16):163901
pubmed: 31702361
Sci Rep. 2019 Apr 15;9(1):6048
pubmed: 30988521
Opt Express. 2021 Oct 11;29(21):32951-32965
pubmed: 34809116
Opt Express. 2018 Mar 5;26(5):5686-5693
pubmed: 29529770
Nano Lett. 2014 Jul 9;14(7):3881-6
pubmed: 24885198
Opt Express. 2021 Sep 27;29(20):32105-32113
pubmed: 34615288
Materials (Basel). 2022 Mar 16;15(6):
pubmed: 35329652
Adv Mater. 2022 Apr;34(13):e2108884
pubmed: 34997633
Nature. 2009 Aug 27;460(7259):1110-2
pubmed: 19684572
Nano Lett. 2019 May 8;19(5):3238-3243
pubmed: 31009229
Science. 2021 Oct 29;374(6567):612-616
pubmed: 34709910
Sci Adv. 2017 Jul 12;3(7):e1700721
pubmed: 28706994
J Phys Chem Lett. 2020 Sep 3;11(17):7009-7014
pubmed: 32786818
Sci Rep. 2021 Apr 22;11(1):8684
pubmed: 33888777
Materials (Basel). 2022 May 23;15(10):
pubmed: 35629759
Opt Express. 2008 May 12;16(10):7181-8
pubmed: 18545422
Nature. 2002 May 2;417(6884):52-5
pubmed: 11986662
Nanoscale. 2018 Sep 20;10(36):17105-17111
pubmed: 30179242

Auteurs

Kiyanoush Goudarzi (K)

Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.

Moonjoo Lee (M)

Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.

Classifications MeSH