Synthetic Route to Conjugated Donor-Acceptor Polymer Brushes via Alternating Copolymerization of Bifunctional Monomers.
RAFT polymerization
alternating copolymers
donor–acceptor polymers
metal-free ATRP polymerization
polymer brushes
Journal
Polymers
ISSN: 2073-4360
Titre abrégé: Polymers (Basel)
Pays: Switzerland
ID NLM: 101545357
Informations de publication
Date de publication:
04 Jul 2022
04 Jul 2022
Historique:
received:
12
06
2022
revised:
27
06
2022
accepted:
30
06
2022
entrez:
9
7
2022
pubmed:
10
7
2022
medline:
10
7
2022
Statut:
epublish
Résumé
Alternating donor-acceptor conjugated polymers, widely investigated due to their applications in organic photovoltaics, are obtained mainly by cross-coupling reactions. Such a synthetic route exhibits limited efficiency and requires using, for example, toxic palladium catalysts. Furthermore, the coating process demands solubility of the macromolecules, provided by the introduction of alkyl side chains, which have an impact on the properties of the final material. Here, we present the synthetic route to ladder-like donor-acceptor polymer brushes using alternating copolymerization of modified styrene and maleic anhydride monomers, ensuring proper arrangement of the pendant donor and acceptor groups along the polymer chains grafted from a surface. As a proof of concept, macromolecules with pendant thiophene and benzothiadiazole groups were grafted by means of RAFT and metal-free ATRP polymerizations. Densely packed brushes with a thickness up to 200 nm were obtained in a single polymerization process, without the necessity of using metal-based catalysts or bulky substituents of the monomers. Oxidative polymerization using FeCl
Identifiants
pubmed: 35808780
pii: polym14132735
doi: 10.3390/polym14132735
pmc: PMC9268968
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : Ministry of Science and Higher Education
ID : K/PMI/000296
Organisme : Ministry of Science and Higher Education
ID : 2020/36/T/ST5/00299
Références
ACS Appl Mater Interfaces. 2020 Feb 19;12(7):8713-8721
pubmed: 32043356
Nanoscale. 2013 Sep 7;5(17):7838-43
pubmed: 23852259
Int J Mol Sci. 2022 May 24;23(11):
pubmed: 35682563
ACS Appl Mater Interfaces. 2019 Aug 7;11(31):28106-28114
pubmed: 31311263
Nanomaterials (Basel). 2021 Aug 15;11(8):
pubmed: 34443898
Materials (Basel). 2020 Jan 22;13(3):
pubmed: 31978961
Angew Chem Int Ed Engl. 2018 Oct 8;57(41):13433-13438
pubmed: 30155954
J Am Chem Soc. 2022 Jan 26;144(3):1351-1360
pubmed: 35007084
Chem Soc Rev. 2003 Jul;32(4):181-91
pubmed: 12875024
ACS Macro Lett. 2018 Jan 16;7(1):100-104
pubmed: 35610925
J Am Chem Soc. 2012 Feb 8;134(5):2599-612
pubmed: 22296041
ACS Appl Polym Mater. 2022 May 13;4(5):3062-3087
pubmed: 35601464
Nanomicro Lett. 2021 Jan 4;13(1):44
pubmed: 34138225
Phys Chem Chem Phys. 2014 Dec 7;16(45):24853-65
pubmed: 25318819
J Am Chem Soc. 2014 Jan 29;136(4):1190-3
pubmed: 24422463
ACS Macro Lett. 2021 Oct 19;10(10):1306-1314
pubmed: 35549036
ACS Appl Mater Interfaces. 2021 Jun 30;13(25):29866-29875
pubmed: 34152743
Nano Lett. 2006 Mar;6(3):573-8
pubmed: 16522065
Int J Mol Sci. 2022 May 31;23(11):
pubmed: 35682845
Macromol Rapid Commun. 2021 Dec;42(23):e2100501
pubmed: 34597451
Chem Rev. 2017 Feb 8;117(3):1105-1318
pubmed: 28135076
J Am Chem Soc. 2021 Jul 28;143(29):11180-11190
pubmed: 34264077
Chem Soc Rev. 2021 Nov 15;50(22):12702-12743
pubmed: 34643198
Chemistry. 2021 Jan 13;27(3):939-943
pubmed: 32935405
Macromol Rapid Commun. 2009 Jan 2;30(1):45-51
pubmed: 21706537
Angew Chem Int Ed Engl. 2012 Dec 3;51(49):12321-4
pubmed: 23109409