Effect of transcutaneous auricular vagus nerve stimulation on delayed neurocognitive recovery in elderly patients.
Cholinesterase
Inflammation
Postoperative cognitive decline
Transauricular vagus nerve stimulation
Journal
Aging clinical and experimental research
ISSN: 1720-8319
Titre abrégé: Aging Clin Exp Res
Pays: Germany
ID NLM: 101132995
Informations de publication
Date de publication:
Oct 2022
Oct 2022
Historique:
received:
19
03
2022
accepted:
08
06
2022
pubmed:
10
7
2022
medline:
9
11
2022
entrez:
9
7
2022
Statut:
ppublish
Résumé
The aim of this study was to investigate whether transauricular vagus nerve stimulation (taVNS) could decrease the incidence of delayed neurocognitive recovery (dNCR) in elderly adults after total joint arthroplasty (TJA). A prospective, randomized, double-blind, sham-controlled trial was designed. In total, 124 elderly patients undergoing TJA were enrolled and randomly assigned to taVNS group (n = 62), who received taVNS at 1 h before anesthetic induction until the end of surgery, or sham stimulation (SS) group (n = 62), who received SS in the same manner. Neuropsychological batteries were performed before and at 1 week after surgery to assess the incidence of dNCR. Blood samples were collected before surgery and at 1 day after surgery to detect the activity of cholinesterase (AChE and BChE), as well as the levels of inflammatory factors (TNF-α, IL-1β, IL-6, and HMGB1) and brain damage factor S100β. Of 124 patients, 119 completed 1 week neuropsychological tests. The incidence of dNCR was significantly decreased in taVNS group [10% (6/60)] compared with the SS group [27.1% (16/59)] (P < 0.05). Patients who received taVNS had lower blood levels of AChE, BChE, IL-6, HMGB1, and S100β after surgery (P < 0.05), as compared with those in the SS group. There was no difference in TNF-α between the two groups. The taVNS can decrease the incidence of dNCR after TJA in elderly patients, which may be related to the inhibition of inflammatory cytokine production and the reduction of cholinesterase activity.
Sections du résumé
BACKGROUND
BACKGROUND
The aim of this study was to investigate whether transauricular vagus nerve stimulation (taVNS) could decrease the incidence of delayed neurocognitive recovery (dNCR) in elderly adults after total joint arthroplasty (TJA).
METHODS
METHODS
A prospective, randomized, double-blind, sham-controlled trial was designed. In total, 124 elderly patients undergoing TJA were enrolled and randomly assigned to taVNS group (n = 62), who received taVNS at 1 h before anesthetic induction until the end of surgery, or sham stimulation (SS) group (n = 62), who received SS in the same manner. Neuropsychological batteries were performed before and at 1 week after surgery to assess the incidence of dNCR. Blood samples were collected before surgery and at 1 day after surgery to detect the activity of cholinesterase (AChE and BChE), as well as the levels of inflammatory factors (TNF-α, IL-1β, IL-6, and HMGB1) and brain damage factor S100β.
RESULTS
RESULTS
Of 124 patients, 119 completed 1 week neuropsychological tests. The incidence of dNCR was significantly decreased in taVNS group [10% (6/60)] compared with the SS group [27.1% (16/59)] (P < 0.05). Patients who received taVNS had lower blood levels of AChE, BChE, IL-6, HMGB1, and S100β after surgery (P < 0.05), as compared with those in the SS group. There was no difference in TNF-α between the two groups.
CONCLUSION
CONCLUSIONS
The taVNS can decrease the incidence of dNCR after TJA in elderly patients, which may be related to the inhibition of inflammatory cytokine production and the reduction of cholinesterase activity.
Identifiants
pubmed: 35809206
doi: 10.1007/s40520-022-02177-x
pii: 10.1007/s40520-022-02177-x
doi:
Substances chimiques
Cholinesterases
EC 3.1.1.8
HMGB1 Protein
0
Interleukin-6
0
Tumor Necrosis Factor-alpha
0
Types de publication
Randomized Controlled Trial
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2421-2429Subventions
Organisme : National Natural Science Foundation of China
ID : 81771134
Organisme : Innovation guide Project Science and Technology Winter Olympics special project
ID : 19977790D
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Références
Evered L, Silbert B, Knopman DS et al (2018) Recommendations for the nomenclature of cognitive change associated with anaesthesia and surgery—2018. Anesthesiology 129:872–879. https://doi.org/10.1097/aln.0000000000002334
doi: 10.1097/aln.0000000000002334
pubmed: 30325806
Steinmetz J, Christensen KB, Lund T et al (2009) Long-term consequences of postoperative cognitive dysfunction. Anesthesiology 110:548–555. https://doi.org/10.1097/ALN.0b013e318195b569
doi: 10.1097/ALN.0b013e318195b569
pubmed: 19225398
Kotekar N, Kuruvilla CS, Murthy V (2014) Post-operative cognitive dysfunction in the elderly: a prospective clinical study. Indian J Anaesth 58:263–268. https://doi.org/10.4103/0019-5049.135034
doi: 10.4103/0019-5049.135034
pubmed: 25024467
pmcid: 4090990
Monk TG, Weldon BC, Garvan CW et al (2008) Predictors of cognitive dysfunction after major noncardiac surgery. Anesthesiology 108:18–30. https://doi.org/10.1097/01.anes.0000296071.19434.1e
doi: 10.1097/01.anes.0000296071.19434.1e
pubmed: 18156878
Evered LA, Silbert BS (2018) Postoperative cognitive dysfunction and noncardiac surgery. Anesth Analg 127:496–505. https://doi.org/10.1213/ane.0000000000003514
doi: 10.1213/ane.0000000000003514
pubmed: 29889707
Yan SC, Fu SX, Li N et al (2021) Comparison of analgesic effects and postoperative cognitive function following total knee arthroplasty: continuous intravenous infusion of fentanyl vs. ultrasound-guided continuous femoral nerve block with ropivacaine. Am J Transl Res 13:3174–3181
pubmed: 34017486
pmcid: 8129300
Chen Y, Qin J (2021) Modified frailty index independently predicts postoperative delirium and delayed neurocognitive recovery after elective total joint arthroplasty. J Arthroplasty 36:449–453. https://doi.org/10.1016/j.arth.2020.07.074
doi: 10.1016/j.arth.2020.07.074
pubmed: 32863073
Hou R, Wang H, Chen L et al (2018) POCD in patients receiving total knee replacement under deep vs light anesthesia: a randomized controlled trial. Brain Behav 8:e00910. https://doi.org/10.1002/brb3.910
doi: 10.1002/brb3.910
pubmed: 29484267
pmcid: 5822567
Teeling JL, Perry VH (2009) Systemic infection and inflammation in acute CNS injury and chronic neurodegeneration: underlying mechanisms. Neuroscience 158:1062–1073. https://doi.org/10.1016/j.neuroscience.2008.07.031
doi: 10.1016/j.neuroscience.2008.07.031
pubmed: 18706982
Lv G, Li C, Wang W et al (2020) Silencing SP1 alleviated sevoflurane-induced POCD development via cholinergic anti-inflammatory pathway. Neurochem Res 45:2082–2090
doi: 10.1007/s11064-020-03070-7
pubmed: 32594292
Zhu Y-J, Peng K, Meng X-W et al (2016) Attenuation of neuroinflammation by dexmedetomidine is associated with activation of a cholinergic anti-inflammatory pathway in a rat tibial fracture model. Brain Res 1644:1–8
doi: 10.1016/j.brainres.2016.04.074
pubmed: 27163720
Yin J, Zhao X, Wang L et al (2019) Sevoflurane-induced inflammation development: involvement of cholinergic anti-inflammatory pathway. Behav Pharmacol 30:729–736
doi: 10.1097/FBP.0000000000000507
Pavlov VA, Tracey KJ (2005) The cholinergic anti-inflammatory pathway. Brain Behav Immun 19:493–499
doi: 10.1016/j.bbi.2005.03.015
pubmed: 15922555
Benfante R, Di Lascio S, Cardani S et al (2021) Acetylcholinesterase inhibitors targeting the cholinergic anti-inflammatory pathway: a new therapeutic perspective in aging-related disorders. Aging Clin Exp Res 33:823–834
doi: 10.1007/s40520-019-01359-4
pubmed: 31583530
Kalb A, von Haefen C, Sifringer M et al (2013) Acetylcholinesterase inhibitors reduce neuroinflammation and-degeneration in the cortex and hippocampus of a surgery stress rat model. PLoS ONE 8:e62679
doi: 10.1371/journal.pone.0062679
pubmed: 23671623
pmcid: 3643957
Wang T, Zhu H, Hou Y et al (2019) Galantamine reversed early postoperative cognitive deficit via alleviating inflammation and enhancing synaptic transmission in mouse hippocampus. Eur J Pharmacol 846:63–72
doi: 10.1016/j.ejphar.2018.12.034
pubmed: 30586550
Müller A, Olbert M, Heymann A et al (2019) Relevance of peripheral cholinesterase activity on postoperative delirium in adult surgical patients (CESARO): a prospective observational cohort study. Eur J Anaesthesiol 36:114–122
doi: 10.1097/EJA.0000000000000888
pubmed: 30431498
Ben-Menachem E (2002) Vagus-nerve stimulation for the treatment of epilepsy. Lancet Neurol 1:477–482
doi: 10.1016/S1474-4422(02)00220-X
pubmed: 12849332
Bottomley JM, LeReun C, Diamantopoulos A et al (2020) Vagus nerve stimulation (VNS) therapy in patients with treatment resistant depression: a systematic review and meta-analysis. Compr psychiatry 98:152156
doi: 10.1016/j.comppsych.2019.152156
Straube A, Ellrich J, Eren O et al (2015) Treatment of chronic migraine with transcutaneous stimulation of the auricular branch of the vagal nerve (auricular t-VNS): a randomized, monocentric clinical trial. J Headache Pain 16:1–9
doi: 10.1186/s10194-015-0543-3
Yuan H, Silberstein SD (2016) Vagus nerve and vagus nerve stimulation, a comprehensive review: part II. Headache 56:259–266. https://doi.org/10.1111/head.12650
doi: 10.1111/head.12650
pubmed: 26381725
Stavrakis S, Humphrey MB, Scherlag BJ et al (2015) Low-level transcutaneous electrical vagus nerve stimulation suppresses atrial fibrillation. J Am Coll Cardiol 65:867–875. https://doi.org/10.1016/j.jacc.2014.12.026
doi: 10.1016/j.jacc.2014.12.026
pubmed: 25744003
pmcid: 4352201
Salama M, Akan A, Mueller MR (2020) Transcutaneous stimulation of auricular branch of the vagus nerve attenuates the acute inflammatory response after lung lobectomy. World J Surg 44:3167–3174. https://doi.org/10.1007/s00268-020-05543-w
doi: 10.1007/s00268-020-05543-w
pubmed: 32358638
Cai L, Lu K, Chen X et al (2019) Auricular vagus nerve stimulation protects against postoperative cognitive dysfunction by attenuating neuroinflammation and neurodegeneration in aged rats. Neurosci Lett 703:104–110. https://doi.org/10.1016/j.neulet.2019.03.034
doi: 10.1016/j.neulet.2019.03.034
pubmed: 30904576
Calamia M, Markon K, Tranel D (2012) Scoring higher the second time around: meta-analyses of practice effects in neuropsychological assessment. Clin Neuropsychol 26:543–570. https://doi.org/10.1080/13854046.2012.680913
doi: 10.1080/13854046.2012.680913
pubmed: 22540222
Butt MF, Albusoda A, Farmer AD et al (2020) The anatomical basis for transcutaneous auricular vagus nerve stimulation. J Anat 236:588–611. https://doi.org/10.1111/joa.13122
doi: 10.1111/joa.13122
pubmed: 31742681
Funder KS, Steinmetz J (2012) Post-operative cognitive dysfunction–lessons from the ISPOCD studies. Trend Anaesth Crit Care 2:94–97
doi: 10.1016/j.tacc.2012.02.009
Moller JT, Cluitmans P, Rasmussen LS et al (1998) Long-term postoperative cognitive dysfunction in the elderly ISPOCD1 study. ISPOCD investigators. International study of post-operative cognitive dysfunction. Lancet 351:857–861. https://doi.org/10.1016/s0140-6736(97)07382-0
doi: 10.1016/s0140-6736(97)07382-0
pubmed: 9525362
Rasmussen LS, Larsen K, Houx P et al (2001) The assessment of postoperative cognitive function. Acta Anaesthesiol Scand 45:275–289. https://doi.org/10.1034/j.1399-6576.2001.045003275.x
doi: 10.1034/j.1399-6576.2001.045003275.x
pubmed: 11207462
Krenk L, Kehlet H, Bæk Hansen T et al (2014) Cognitive dysfunction after fast-track hip and knee replacement. Anesth Analg 118:1034–1040. https://doi.org/10.1213/ane.0000000000000194
doi: 10.1213/ane.0000000000000194
pubmed: 24781572
Holmgaard F, Vedel AG, Rasmussen LS et al (2019) The association between postoperative cognitive dysfunction and cerebral oximetry during cardiac surgery: a secondary analysis of a randomised trial. Br J Anaesth 123:196–205. https://doi.org/10.1016/j.bja.2019.03.045
doi: 10.1016/j.bja.2019.03.045
pubmed: 31104758
pmcid: 6676044
Liu X, Yu Y, Zhu S (2018) Inflammatory markers in postoperative delirium (POD) and cognitive dysfunction (POCD): a meta-analysis of observational studies. PLoS ONE 13:e0195659. https://doi.org/10.1371/journal.pone.0195659
doi: 10.1371/journal.pone.0195659
pubmed: 29641605
pmcid: 5895053
Hirsch J, Vacas S, Terrando N et al (2016) Perioperative cerebrospinal fluid and plasma inflammatory markers after orthopedic surgery. J Neuroinflammation 13:211. https://doi.org/10.1186/s12974-016-0681-9
doi: 10.1186/s12974-016-0681-9
pubmed: 27577265
pmcid: 5006595
Bonaz B, Sinniger V, Pellissier S (2016) Anti-inflammatory properties of the vagus nerve: potential therapeutic implications of vagus nerve stimulation. J Physiol 594:5781–5790. https://doi.org/10.1113/jp271539
doi: 10.1113/jp271539
pubmed: 27059884
pmcid: 5063949
Olofsson PS, Levine YA, Caravaca A et al (2015) Single-pulse and unidirectional electrical activation of the cervical vagus nerve reduces tumor necrosis factor in endotoxemia. Bioelectron Med 2:37–42
doi: 10.15424/bioelectronmed.2015.00006
Frangos E, Ellrich J, Komisaruk BR (2015) Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: fMRI evidence in humans. Brain Stimul 8:624–636. https://doi.org/10.1016/j.brs.2014.11.018
doi: 10.1016/j.brs.2014.11.018
pubmed: 25573069
Kaniusas E, Kampusch S, Tittgemeyer M et al (2019) Current directions in the auricular vagus nerve stimulation I—a physiological perspective. Front Neurosci 13:854. https://doi.org/10.3389/fnins.2019.00854
doi: 10.3389/fnins.2019.00854
pubmed: 31447643
pmcid: 6697069
Yang S, Gu C, Mandeville ET et al (2017) Anesthesia and surgery impair blood-brain barrier and cognitive function in mice. Front Immunol 8:902. https://doi.org/10.3389/fimmu.2017.00902
doi: 10.3389/fimmu.2017.00902
pubmed: 28848542
pmcid: 5552714
He HJ, Wang Y, Le Y et al (2012) Surgery upregulates high mobility group box-1 and disrupts the blood–brain barrier causing cognitive dysfunction in aged rats. CNS Neurosci Ther 18:994–1002. https://doi.org/10.1111/cns.12018
doi: 10.1111/cns.12018
pubmed: 23078219
pmcid: 6493557
Fu C, Lin J, Gong G et al (2021) Inflammatory markers in postoperative cognitive dysfunction for patients undergoing total hip arthroplasty: a meta-analysis. Aging Clin Exp Res. https://doi.org/10.1007/s40520-021-01919-7
doi: 10.1007/s40520-021-01919-7
pubmed: 34570316
Lin E, Calvano SE, Lowry SF (2000) Inflammatory cytokines and cell response in surgery. Surgery 127:117–126. https://doi.org/10.1067/msy.2000.101584
doi: 10.1067/msy.2000.101584
pubmed: 10686974
Borovikova LV, Ivanova S, Zhang M et al (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405:458–462. https://doi.org/10.1038/35013070
doi: 10.1038/35013070
pubmed: 10839541
Shenhar-Tsarfaty S, Berliner S, Bornstein NM et al (2014) Cholinesterases as biomarkers for parasympathetic dysfunction and inflammation-related disease. J Mol Neurosci 53:298–305. https://doi.org/10.1007/s12031-013-0176-4
doi: 10.1007/s12031-013-0176-4
pubmed: 24254221
Ben Assayag E, Shenhar-Tsarfaty S, Ofek K et al (2010) Serum cholinesterase activities distinguish between stroke patients and controls and predict 12-month mortality. Mol Med 16:278–286. https://doi.org/10.2119/molmed.2010.00015
doi: 10.2119/molmed.2010.00015
pubmed: 20464061
pmcid: 2896466
Das UN (2007) Acetylcholinesterase and butyrylcholinesterase as possible markers of low-grade systemic inflammation. Med Sci Monit 13:214–221
Jo BG, Kim SH, Namgung U (2020) Vagal afferent fibers contribute to the anti-inflammatory reactions by vagus nerve stimulation in concanavalin a model of hepatitis in rats. Mol Med 26:119. https://doi.org/10.1186/s10020-020-00247-2
doi: 10.1186/s10020-020-00247-2
pubmed: 33272194
pmcid: 7713005
Shaked I, Meerson A, Wolf Y et al (2009) MicroRNA-132 potentiates cholinergic anti-inflammatory signaling by targeting acetylcholinesterase. Immunity 31:965–973. https://doi.org/10.1016/j.immuni.2009.09.019
doi: 10.1016/j.immuni.2009.09.019
pubmed: 20005135
Consolim-Colombo FM, Sangaleti CT, Costa FO et al (2017) Galantamine alleviates inflammation and insulin resistance in patients with metabolic syndrome in a randomized trial. JCI Insight. https://doi.org/10.1172/jci.insight.93340
doi: 10.1172/jci.insight.93340
pubmed: 28724799
pmcid: 5518569
Lin X, Tang J, Liu C et al (2020) Cerebrospinal fluid cholinergic biomarkers are associated with postoperative delirium in elderly patients undergoing total hip/knee replacement: a prospective cohort study. BMC Anesthesiol 20:246. https://doi.org/10.1186/s12871-020-01166-9
doi: 10.1186/s12871-020-01166-9
pubmed: 32988381
pmcid: 7520969
Guenther U, Wolke M, Schelling R et al (2021) Low cholinesterase activity is a risk factor for delirium after cardiac surgery: a prospective cohort study. Eur J Anaesthesiol 38:554–556
doi: 10.1097/EJA.0000000000001430
pubmed: 33821836
Josviak ND, Batistela MS, Souza RKM et al (2017) Plasma butyrylcholinesterase activity: a possible biomarker for differential diagnosis between Alzheimer’s disease and dementia with Lewy bodies? Int J Neurosci 127:1082–1086. https://doi.org/10.1080/00207454.2017.1329203
doi: 10.1080/00207454.2017.1329203
pubmed: 28504037
Chang EH, Chavan SS, Pavlov VA (2019) Cholinergic control of inflammation, metabolic dysfunction, and cognitive impairment in obesity-associated disorders: mechanisms and novel therapeutic opportunities. Front Neurosci 13:263. https://doi.org/10.3389/fnins.2019.00263
doi: 10.3389/fnins.2019.00263
pubmed: 31024226
pmcid: 6460483
Zhao JJ, Wang ZH, Zhang YJ et al (2022) The mechanisms through which auricular vagus nerve stimulation protects against cerebral ischemia/reperfusion injury. Neural Regen Res 17:594–600. https://doi.org/10.4103/1673-5374.320992
doi: 10.4103/1673-5374.320992
pubmed: 34380899
Xu H, Chen L, Zhang X et al (2019) Central cholinergic neuronal degeneration promotes the development of postoperative cognitive dysfunction. Lab Invest 99:1078–1088. https://doi.org/10.1038/s41374-018-0174-9
doi: 10.1038/s41374-018-0174-9
pubmed: 30626892
Ferreira-Vieira TH, Guimaraes IM, Silva FR et al (2016) Alzheimer’s disease: targeting the cholinergic system. Curr Neuropharmacol 14:101–115. https://doi.org/10.2174/1570159x13666150716165726
doi: 10.2174/1570159x13666150716165726
pubmed: 26813123
pmcid: 4787279
Furey ML, Pietrini P, Alexander GE et al (2000) Time course of pharmacodynamic and pharmacokinetic effects of physostigmine assessed by functional brain imaging in humans. Pharmacol Biochem Behav 66:475–481. https://doi.org/10.1016/s0091-3057(00)00186-6
doi: 10.1016/s0091-3057(00)00186-6
pubmed: 10899358
Kees MG, Pongratz G, Kees F et al (2003) Via beta-adrenoceptors, stimulation of extrasplenic sympathetic nerve fibers inhibits lipopolysaccharide-induced TNF secretion in perfused rat spleen. J Neuroimmunol 145:77–85. https://doi.org/10.1016/j.jneuroim.2003.09.011
doi: 10.1016/j.jneuroim.2003.09.011
pubmed: 14644033