Trade off-free entanglement stabilization in a superconducting qutrit-qubit system.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
09 Jul 2022
09 Jul 2022
Historique:
received:
05
04
2022
accepted:
28
06
2022
entrez:
9
7
2022
pubmed:
10
7
2022
medline:
10
7
2022
Statut:
epublish
Résumé
Quantum reservoir engineering is a powerful framework for autonomous quantum state preparation and error correction. However, traditional approaches to reservoir engineering are hindered by unavoidable coherent leakage out of the target state, which imposes an inherent trade off between achievable steady-state state fidelity and stabilization rate. In this work we demonstrate a protocol that achieves trade off-free Bell state stabilization in a qutrit-qubit system realized on a circuit-QED platform. We accomplish this by creating a purely dissipative channel for population transfer into the target state, mediated by strong parametric interactions coupling the second-excited state of a superconducting transmon and the engineered bath resonator. Our scheme achieves a state preparation fidelity of 84% with a stabilization time constant of 339 ns, leading to a 54 ns error-time product in a solid-state quantum information platform.
Identifiants
pubmed: 35810169
doi: 10.1038/s41467-022-31638-0
pii: 10.1038/s41467-022-31638-0
pmc: PMC9271051
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3994Subventions
Organisme : DOE | Office of Science (SC)
ID : DE-SC0019461
Informations de copyright
© 2022. The Author(s).
Références
Phys Rev Lett. 1996 Dec 2;77(23):4728-4731
pubmed: 10062616
Nat Commun. 2022 May 6;13(1):2495
pubmed: 35523783
Nature. 2021 Feb;590(7845):243-248
pubmed: 33568826
Phys Rev Lett. 2012 Nov 2;109(18):183602
pubmed: 23215278
Phys Rev Lett. 2011 Aug 19;107(8):080503
pubmed: 21929153
Science. 2015 Jan 2;347(6217):53-6
pubmed: 25525161
Nature. 2013 Oct 17;502(7471):350-4
pubmed: 24132292
Phys Rev Lett. 2012 Dec 14;109(24):240502
pubmed: 23368293
Nature. 2018 Nov;563(7732):527-531
pubmed: 30397345
Nature. 2019 Feb;566(7742):51-57
pubmed: 30728523
Phys Rev Lett. 2011 Jul 1;107(1):010402
pubmed: 21797525
Nature. 2011 Aug 31;477(7362):73-7
pubmed: 21886159
Phys Rev Lett. 2022 Feb 25;128(8):080502
pubmed: 35275690
Phys Rev Lett. 2015 Jan 9;114(1):010501
pubmed: 25615454
Phys Rev Lett. 2019 Jan 11;122(1):014103
pubmed: 31012673
Nature. 2013 Dec 19;504(7480):419-22
pubmed: 24270808
Phys Rev Lett. 2016 Jun 17;116(24):240503
pubmed: 27367372
Nature. 2019 Oct;574(7779):505-510
pubmed: 31645734
Phys Rev Lett. 2005 Aug 5;95(6):060502
pubmed: 16090932
Nature. 2020 Aug;584(7820):205-209
pubmed: 32788737
Science. 2015 Feb 20;347(6224):853-7
pubmed: 25700514
Nature. 2013 Dec 19;504(7480):415-8
pubmed: 24270806
Phys Rev Lett. 2017 Oct 13;119(15):150502
pubmed: 29077454