Molecular Subclasses of Clear Cell Ovarian Carcinoma and Their Impact on Disease Behavior and Outcomes.
Journal
Clinical cancer research : an official journal of the American Association for Cancer Research
ISSN: 1557-3265
Titre abrégé: Clin Cancer Res
Pays: United States
ID NLM: 9502500
Informations de publication
Date de publication:
14 11 2022
14 11 2022
Historique:
received:
25
10
2021
revised:
24
02
2022
accepted:
07
07
2022
pubmed:
12
7
2022
medline:
16
11
2022
entrez:
11
7
2022
Statut:
ppublish
Résumé
To identify molecular subclasses of clear cell ovarian carcinoma (CCOC) and assess their impact on clinical presentation and outcomes. We profiled 421 primary CCOCs that passed quality control using a targeted deep sequencing panel of 163 putative CCOC driver genes and whole transcriptome sequencing of 211 of these tumors. Molecularly defined subgroups were identified and tested for association with clinical characteristics and overall survival. We detected a putative somatic driver mutation in at least one candidate gene in 95% (401/421) of CCOC tumors including ARID1A (in 49% of tumors), PIK3CA (49%), TERT (20%), and TP53 (16%). Clustering of cancer driver mutations and RNA expression converged upon two distinct subclasses of CCOC. The first was dominated by ARID1A-mutated tumors with enriched expression of canonical CCOC genes and markers of platinum resistance; the second was largely comprised of tumors with TP53 mutations and enriched for the expression of genes involved in extracellular matrix organization and mesenchymal differentiation. Compared with the ARID1A-mutated group, women with TP53-mutated tumors were more likely to have advanced-stage disease, no antecedent history of endometriosis, and poorer survival, driven by their advanced stage at presentation. In women with ARID1A-mutated tumors, there was a trend toward a lower rate of response to first-line platinum-based therapy. Our study suggests that CCOC consists of two distinct molecular subclasses with distinct clinical presentation and outcomes, with potential relevance to both traditional and experimental therapy responsiveness. See related commentary by Lheureux, p. 4838.
Identifiants
pubmed: 35816189
pii: 706955
doi: 10.1158/1078-0432.CCR-21-3817
pmc: PMC9777703
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
4947-4956Subventions
Organisme : NCI NIH HHS
ID : L30 CA220884
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA008748
Pays : United States
Organisme : NCI NIH HHS
ID : P50 CA247749
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA015083
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA248288
Pays : United States
Organisme : NCI NIH HHS
ID : R21 CA222867
Pays : United States
Organisme : NCI NIH HHS
ID : P50 CA136393
Pays : United States
Organisme : NCI NIH HHS
ID : K08 CA241318
Pays : United States
Commentaires et corrections
Type : CommentIn
Informations de copyright
©2022 The Authors; Published by the American Association for Cancer Research.
Références
Nat Rev Clin Oncol. 2009 Sep;6(9):535-43
pubmed: 19652654
JCO Precis Oncol. 2017 Jul;2017:
pubmed: 28890946
Obstet Gynecol. 2010 Sep;116(3):733-743
pubmed: 20733460
Endocrinology. 2014 Dec;155(12):4986-99
pubmed: 25243856
Nat Genet. 2014 May;46(5):438-43
pubmed: 24658002
Am J Pathol. 2017 Oct;187(10):2246-2258
pubmed: 28888422
Science. 2019 Nov 8;366(6466):714-723
pubmed: 31699932
Nature. 2020 Jun;582(7810):95-99
pubmed: 32494066
Nat Commun. 2019 Apr 3;10(1):1523
pubmed: 30944313
Oncol Rep. 2008 Dec;20(6):1299-303
pubmed: 19020706
Bioinformatics. 2009 Jul 15;25(14):1754-60
pubmed: 19451168
Nat Genet. 2014 May;46(5):424-6
pubmed: 24658004
Int J Gynecol Cancer. 2021 Apr;31(4):605-616
pubmed: 32948640
Bioinformatics. 2014 Apr 1;30(7):923-30
pubmed: 24227677
EBioMedicine. 2019 Dec;50:203-210
pubmed: 31761620
Curr Protoc Bioinformatics. 2016 Dec 8;56:15.10.1-15.10.18
pubmed: 27930805
Oncotarget. 2014 Sep 15;5(17):7776-87
pubmed: 25277200
Nucleic Acids Res. 2003 Jul 1;31(13):3812-4
pubmed: 12824425
Cell. 2018 Apr 5;173(2):371-385.e18
pubmed: 29625053
Nat Rev Cancer. 2018 Nov;18(11):696-705
pubmed: 30293088
Cancer Discov. 2017 Aug;7(8):818-831
pubmed: 28572459
J Comput Biol. 2006 Jun;13(5):1028-40
pubmed: 16796549
Cancer Control. 2010 Jan;17(1):7-15
pubmed: 20010514
Genome Biol. 2014;15(12):550
pubmed: 25516281
Nature. 2020 May;581(7809):434-443
pubmed: 32461654
Eur J Cancer. 2015 Sep;51(13):1831-42
pubmed: 26059197
BJOG. 2020 Oct;127(11):1409-1420
pubmed: 32285600
Am J Pathol. 2009 May;174(5):1597-601
pubmed: 19349352
J Clin Oncol. 2016 Aug 20;34(24):2888-98
pubmed: 27325851
Science. 2010 Oct 8;330(6001):228-31
pubmed: 20826764
Int J Gynecol Pathol. 2016 Sep;35(5):430-41
pubmed: 26974996
Oncotarget. 2017 Jul 18;8(29):46891-46899
pubmed: 28423358
Bioinformatics. 2013 Jan 1;29(1):15-21
pubmed: 23104886
Cancer Discov. 2015 Jan;5(1):25-34
pubmed: 25527197
Front Pharmacol. 2019 Mar 12;10:230
pubmed: 30930778
Int J Mol Sci. 2019 Feb 22;20(4):
pubmed: 30813239
Gynecol Oncol. 2011 Sep;122(3):541-7
pubmed: 21640372
Bioinformatics. 2009 Nov 1;25(21):2865-71
pubmed: 19561018
Maturitas. 2015 May;81(1):5-9
pubmed: 25708226
J Pathol. 2015 Jun;236(2):201-9
pubmed: 25692284
Int J Gynecol Pathol. 2013 Nov;32(6):541-6
pubmed: 24071869
Int J Gynecol Cancer. 2016 May;26(4):648-54
pubmed: 26937756
Nat Genet. 2014 May;46(5):427-9
pubmed: 24658001
Nat Genet. 2017 Jun;49(6):856-865
pubmed: 28436987
Bioinformatics. 2012 Jul 15;28(14):1811-7
pubmed: 22581179
Br J Haematol. 2018 Feb;180(4):484-500
pubmed: 29193012
Bioinformatics. 2014 Apr 1;30(7):1015-6
pubmed: 24371154
Curr Protoc Hum Genet. 2013 Jan;Chapter 7:Unit7.20
pubmed: 23315928
Mol Cancer Res. 2018 Dec;16(12):1819-1825
pubmed: 30037854
J Mol Diagn. 2015 May;17(3):251-64
pubmed: 25801821