Cold spots and cold moments: The potential for sediment freezing to depress denitrification in wetland sediments.


Journal

Journal of environmental quality
ISSN: 1537-2537
Titre abrégé: J Environ Qual
Pays: United States
ID NLM: 0330666

Informations de publication

Date de publication:
Sep 2022
Historique:
received: 12 08 2021
accepted: 06 06 2022
pubmed: 13 7 2022
medline: 5 10 2022
entrez: 12 7 2022
Statut: ppublish

Résumé

Within the north-temperate zone, winters can be long and are associated with conditions of low temperature and potential for sediment freezing. There are critical gaps in our knowledge of biogeochemical cycling during winter and inadequate knowledge of how warming winters and changing snowpack might affect biogeochemistry. Here, we assessed the impacts of sediment freeze-thaw cycling and nitrate amendment on denitrification rates in the littoral fringe of four urban wetlands. We demonstrate the potential for experimental sediment freezing to suppress denitrification, although freezing effects were not observed at all sites. Multiple freeze-thaw cycles were assessed, and, although subsequent cycles may affect denitrification, the first instance of our experimental freezing seems the most critical. Although this work demonstrates potential sensitivity of wetland denitrification rates to changing winter conditions, we note nitrate availability has a larger impact upon denitrification rates. This suggests nitrification rates and changing nitrate loads may be more important determinants of nitrate retention than sediment freeze-thaw history. Although there has been great interest in hot spots and moments for biogeochemical cycling, we suggest there is similar need to understand cold spots and moments, as evidenced here. This is particularly important where cold moments may correspond with critical periods of nitrate transport, such as snowmelt.

Identifiants

pubmed: 35819079
doi: 10.1002/jeq2.20384
doi:

Substances chimiques

Nitrates 0
Nitrogen N762921K75

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

990-1002

Subventions

Organisme : Global Institute for Water Security, University of Saskatchewan
ID : DG 06556
Organisme : NSERC 

Informations de copyright

© 2022 The Authors. Journal of Environmental Quality published by Wiley Periodicals LLC on behalf of American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

Références

Almaraz, M., Wong, M., & Yang, W. (2020). Looking back to look ahead: A vision for soil denitrification research. Ecology, 101(1), 90-107. e02917. https://doi.org/10.1002/ecy.2917
Arango, C. P., & Tank, J. L. (2008). Land use influences the spatiotemporal controls on nitrification and denitrification in headwater streams. Journal of the North American Benthological Society, 27(1), 90-107. https://doi.org/10.1899/07-024.1
Batson, J. a., Mander, Ü., & Mitsch, W. J. (2012). Denitrification and a nitrogen budget of created riparian wetlands. Journal of Environment Quality, 41(6), 2024-2032. https://doi.org/10.2134/jeq2011.0449
Baulch, H., Elliott, J., Cordeiro, M., Flaten, D., Lobb, D., & Wilson, H. (2019). Soil and water management: Opportunities to mitigate nutrient losses to surface waters in the Northern Great Plains. Environmental Reviews, 27, 447-476. https://doi.org/10.1139/er-2018-0101
Bettez, N. D., & Groffman, P. M. (2013). Nitrogen deposition in and near an urban ecosystem. Environmental Science & Technology, 47(11), 6047-6051. https://doi.org/10.1021/es400664b
Bortolotti, L., Vinebrooke, R., & Louis St, V. (2016). Prairie wetland communities recover at different rates following hydrological restoration. Freshwater Biology, 61, 1874-1890. https://doi.org/10.1111/fwb.12822
Boswell, E., Thompson, A., Balster, N., & Bajcz, A. (2020). Novel determination of effective freeze-thaw cycles as drivers of ecosystem change. Journal of Environmental Quality, 49, 314-323. https://doi.org/10.1002/jeq2.20053
Brin, L., Giblin, A., & Rich, J. (2017). Similar temperature responses suggest future climate warming will not alter partitioning between denitrification and anammox in temperate marine sediments. Global Change Biology, 23(1), 331-340. https://doi.org/10.1111/gcb.13370
Brin, L., Goyer, C., Zebarth, B. J., Burton, D. L., & Chantigny, M. H. (2019). Linking changes in snow cover with microbial nitrogen cycling functional gene abundance and expression in agricultural soil. FEMS Microbiology Ecology, 95, fiz073. https://doi.org/10.1093/femsec/fiz073
Caffrey, J., Bonaglia, S., & Conley, D. (2019). Short exposure to oxygen and sulfide alter nitrification, denitrification, and DNRA activity in seasonally hypoxic estuarine sediments. FEMS Microbiology Letters, 366, fny288. https://doi.org/10.1093/femsle/fny288
Carleton, J. N., Grizzard, T. J., Godrej, A. N., & Post, H. E. (2001). Factors affecting the performance of stormwater treatment wetlands. Water Research, 35(6), 1552-1562. https://doi.org/10.1016/S0043-1354(00)00416-4
Cavaliere, E., & Baulch, H. (2018). Denitrification under lake ice. Biogeochemistry, 137, 285-295. https://doi.org/10.1007/s10533-018-0419-0
Congreves, K., Wagner-Riddle, C., Sci, B., & Clough, T. (2018). Nitrous oxide emissions and biogeochemical responses to soil freezing-thawing and drying-wetting. Soil Biology and Biochemistry, 117, 5-15. https://doi.org/10.1016/j.soilbio.2017.10.040
Corriveau, J., Chambers, P. A., Yates, A. G., & Culp, J. M. (2011). Snowmelt and its role in the hydrologic and nutrient budgets of prairie streams. Water Science and Technology, 64(8), . https://doi.org/10.2166/wst.2011.676
Cory, R. M., Miller, M. P., Mcknight, D. M., Guerard, J. J., & Miller, P. L. (2010). Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra. Limnology and Oceanography: Methods, 8, 67-78.
Duguay, C. R., & Lafleur, P. M. (2003). Determining depth and ice thickness of shallow sub-Arctic lakes using space-borne optical and SAR data. International Journal of Remote Sensing, 24(3), 475-489. https://doi.org/10.1080/01431160304992
Environment and Climate Change Canada. (2019). Canadian climate normals 1981-2010 station data. https://climate.weather.gc.ca/climate_normals/results_1981_2010_e.html?searchType=stnName&txtStationName=saskatoon&searchMethod=contains&txtCentralLatMin=0&txtCentralLatSec=0&txtCewntralLongMin=0&txtCentralLongSec=0&stnID=3328&dispBack=0
Feng, X., Nielsen, L. L., & Simpson, M. J. (2007). Responses of soil organic matter and microorganisms to freeze-thaw cycles. Soil Biology and Biochemistry, 39(8), 2027-2037. https://doi.org/10.1016/j.soilbio.2007.03.003
Gooding, R., & Baulch, H. (2017). Small reservoirs as a beneficial management practice for nitrogen removal. Journal of Environmental Quality, 46(1), 96-104. https://doi.org/10.2134/jeq2016.07.0252
Groffman, P., Holland, E., Myrold, D., Robertson, G., & Zou, X. (1999). Denitrification. In G. Robertson, C. Bledsoe, D. Coleman, & P. Sollins (Eds.), Standard soil methods for long-term ecological research (pp. 273-288). Oxford University Press.
Groffman, P. M., Driscoll, C. T., Fahey, T. J., Hardy, J. P., Fitzhugh, R. D., & Tierney, G. L. (2001). Effects of mild winter freezing on soil nitrogen and carbon dynamics in a northern hardwood forest. Biogeochemistry, 56(2), 191-213. https://doi.org/10.1023/A:1013024603959
Groffman, P. M., Boulware, N. J., Zipperer, W. C., Pouyat, R. V., Band, L. E., & Colosimo, M. F. (2002). Soil nitrogen cycle processes in urban riparian zones. Environmental Science and Technology, 36(21), 4547-4552. https://doi.org/10.1021/es020649z
Groffman, P. M., Law, N. L., Belt, K. T., Band, L. E., & Fisher, G. T. (2004). Nitrogen fluxes and retention in urban watershed ecosystems. Ecosystems, 7(4), 393-403. https://doi.org/10.1007/s10021-003-0039-x
Groffman, P. M., Altabet, M. A., Bohlke, J. K., Butterbach-Bahl, K., David, M. B., Firestone, M. K., Giblin, A. E., Kana, T. M., Nielsen, L. P., & Voyteck, M. A. (2006). Methods for measuring denitrification: Diverse approaches for a difficult problem. Ecological Applications, 16(December), 2091-2122. https://doi.org/10.1890/1051-0761(2006)0162091:MFMDDA2.0.CO;2
Groffman, P. M., Butterbach-Bahl, K., Fulweiler, R. W., Gold, A. J., Morse, J. L., Stander, E. K., Tague, C., Tonitto, C., & Vidon, P. (2009). Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models. Biogeochemistry, 93(1-2), 49-77. https://doi.org/10.1007/s10533-008-9277-5
Hampton, S. E., Galloway, A. W. E., Powers, S. M., Ozersky, T., Woo, K. H., Batt, R. D., Labou, S. G., O'Reilly, C. M., Sharma, S., Lottig, N. R., Stanley, E. H., North, R. L., Stockwell, J. D., Adrian, R., Weyhenmeyer, G. A., Arvola, L., Baulch, H. M., Bertani, I., Bowman, L. L., … M, A. (2016). Ecology under lake ice. Ecology Letters, 20, 98-111. https://doi.org/10.1111/ele.12699
Hansen, A. M., Fleck, J. A., Kraus, T. E. C., Downing, B. D., von Dessonneck, T., & Bergamaschi, B. A. (2018). Procedures for using the Horiba Scientific Aqualog® fluorometer to measure absorbance and fluorescence from dissolved organic matter. USGS Open-File Report 2018-1096. https://doi.org/10.3133/ofr20181096
Harrold, K. (2013). Stratification influences on instream carbon chemistry and export within a beaded Arctic stream and evaluation of fluorescence instrumentation. University of North Carolina at Chapel Hill. https://doi.org/10.17615/fyzw-yd75
Helms, J. R., Stubbins, A., Ritchie, J. D., Minor, E. C., Kieber, D. J., & Mopper, K. (2008). Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnology and Oceanography, 53, 955-969.
Henry, H. (2008). Climate change and soil freezing dynamics: Historical trends and projected changes. Climatic Change, 87(3-4), 421-434. https://doi.org/10.1007/s10584-007-9322-8
Herrmann, A., & Witter, E. (2002). Sources of C and N contributing to the flush in mineralization upon freeze-thaw cycles in soils. Soil Biology and Biochemistry, 34(10), 1495-1505. https://doi.org/10.1016/S0038-0717(02)00121-9
Hume, N. P., Fleming, M. S., & Horne, A. J. (2002). Plant carbohydrate limitation on nitrate reduction in wetland microcosms. Water Research, 36, 577-584. https://doi.org/10.1016/S0043-1354(01)00276-7
Hung, C., & Whalen, J. (2020). Biophysical controls on nitrous oxide emissions following rain-induced thawing of frozen soil microcosms by simulated rainfall. Soil Biology and Biochemistry, 149. https://doi.org/10.1016/j.soilbio.2020.107960
Inwood, S., Tank, J., & Bernot, M. (2005). Patterns of denitrification associated with land use in 9 midwestern headwater streams. Journal of the North American Benthological Society, 24(2), 227-245. https://doi.org/10.1899/04-032.1
Jansson, M., Andersson, R., Berggren, H., & Leonardson, L. (1994). Wetlands and lakes as nitrogen traps. Ambio, 23(6), 320-325. https://doi.org/10.1016/0925-8574(95)90014-4
Jenssen, P. D., Maehlum, T., Krogstad, T., & Vråle, L. (2005). High performance constructed wetlands for cold climates. Journal of Environmental Science and Health, Part A Toxic/Hazardous Substances and Environmental Engineering, 60(6-7), 1343-1353. https://doi.org/10.1081/ESE-200055846
Jiang, N., Yinghua, J., Tian, L., Chen, X., & Sun, W. (2020). Soil water contents control the responses of dissolved nitrogen pools and bacterial communities to freeze-thaw in temperate soils. BioMed Research International, 2020, 6867081. https://doi.org/10.1155/2020/6867081
Juan, Y., Tian, L., Sun, W., Qiu, W., Curtin, D., Gong, L., & Liu, Y. (2020). Simulation of soil freezing-thawing cycles under typical winter conditions: Implications for nitrogen mineralization. Journal of Soils and Sediments, 20, 143-152. https://doi.org/10.1007/s11368-019-02374-8
Kaushal, S. S., Groffman, P. M., Band, L. E., Elliott, E. M., Shields, C. A., & Kendall, C. (2011). Tracking nonpoint source nitrogen pollution in human-impacted watersheds. Environmental Science and Technology, 45(19), 8225-8232. https://doi.org/10.1021/es200779e
Koponen, H. T., Jaakkola, T., Keinänen-Toivola, M. M., Kaipainen, S., Tuomainen, J., Servomaa, K., & Martikainen, P. J. (2006). Microbial communities, biomass, and activities in soils as affected by freeze thaw cycles. Soil Biology and Biochemistry, 38(7), 1861-1871. https://doi.org/10.1016/j.soilbio.2005.12.010
Lane, C. R., Autrey, B. C., Jicha, T., Lehto, L., Elonen, C., & Seifert-Monson, L. (2015). Denitrification potential in geographically isolated wetlands of North Carolina and Florida, USA. Wetlands, 35(3), 459-471. https://doi.org/10.1007/s13157-015-0633-7
Libby, M., VanderZaag, A., Gregorich, E., & Wagner-Riddle, C. (2020). An improved laboratory method shows that freezing intensity increases N2O emissions. Canadian Journal of Soil Science, 100, 1-14. https://doi.org/10.1139/cjss-2019-0073
Lim, P., Pearce, D., Convey, P., Lee, L., Chan, K., & Tan, G. (2020). Effects of freeze-thaw cycles on High Arctic soil bacterial communities. Polar Science, 23. https://doi.org/10.1016/j.polar.2019.100487
Liao, N., Lai, J., Jia, L., Zhang, L., Zhang, J., & Zhang, Z. (2019). Effects of freeze-thaw cycles on phosphorus from sediments in the middle reaches of the Yarlung Zangbo River. International Journal of Environmental Research and Public Health, 16(19). https://www.mdpi.com/1660-4601/16/19/3783
Liu, Q., Tang, J., Shuai He, C., Long, Y., & Wu, C. (2021). Effects of freeze-thaw cycles on soil properties and carbon distribution in saline-alkaline soil of wetland. Sensors and Materials, 33(1), 285-300. https://doi.org/10.18494/SAM.2021.3012
Lu, Z., Du, R., Du, P., Qin, S., Liang, Z., Li, Z., & Wang, Y. (2015). Influences of land use /cover types on nitrous oxide emissions during freeze-thaw periods from waterlogged soils in Inner Mongolia. PLOS ONE, 1, 1-18. https://doi.org/10.1371/journal.pone.0139316
Matzner, E., & Borken, W. (2008). Do freeze-thaw events enhance C and N losses from soils of different ecosystems? A review. European Journal of Soil Science, 59, 274-284. https://doi.org/10.1111/j.1365-2389.2007.00992.x
McClain, M. E., Boyer, E. W., Dent, C. L., Gergel, S. E., Grimm, N. B., Groffman, P. M., Hart, S. C., Harvey, J. W., Johnston, C. A., Mayorga, E., McDowell, W. H., & Pinay, G. (2003). Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems, 6(4), 301-312. https://doi.org/10.1007/s10021-003-0161-9
McPhillips, L., & Walter, M. T. (2015). Hydrologic conditions drive denitrification and greenhouse gas emissions in stormwater detention basins. Ecological Engineering, 85, 67-75. https://doi.org/10.1016/j.ecoleng.2015.10.018
Martins, P., Hoyt, D., Bansal, S., Mills, C., Tfaily, M., Tangen, B., Finocchiaro, R., Johnston, M., McAdams, B., Solensky, M., Smith, G., Chin, Y., & Wilkins, M. (2017). Abundant carbon substrates drive extremely high sulfate reduction rates and methane fluxes in Prairie Pothole Wetlands. Global Change Biology, 23(8), 3107-3120. https://doi.org/10.1111/gcb.13633
Mitchell, C., & Branfireun, B. (2005). Hydrogeomorphic controls on reduction-oxidation conditions across boreal upland-peatland interfaces. Ecosystems, 8, 731-747. https://doi.org/10.1007/s10021-005-1792-9
Mitchell, C., Branfireun, B., & Kolka, R. (2008). Spatial characteristics of net methylmercury production hot spots in peatlands. Environmental Science & Technology, 42(4), 1010-1016. https://doi.org/10.1021/es0704986
Mørkved, P. T., Dörsch, P., Henriksen, T. M., & Bakken, L. R. (2006). N2O emissions and product ratios of nitrification and denitrification as affected by freezing and thawing. Soil Biology and Biochemistry, 38, 3411-3420. https://doi.org/10.1016/j.soilbio.2006.05.015
Murphy, K. R., Butler, K. D., Spencer, R. G. M., Stedmon, C. A., Boehme, J. R., & Aiken, G. R. (2010). Measurement of dissolved organic matter fluorescence in aquatic environments: An interlaboratory comparison. Environmental Science & Technology, 44(24), 9405-9412. https://doi.org/10.1021/es102362t
Newcomer Johnson, T. A., Kaushal, S. S., Mayer, P. M., & Grese, M. M. (2014). Effects of stormwater management and stream restoration on watershed nitrogen retention. Biogeochemistry, 121(1), 81-106. https://doi.org/10.1007/s10533-014-9999-5
Parlanti, E., Wörz, K., Geoffroy, L., & Lamotte, M. (2000). Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Organic Geochemistry, 31, 1765-1781. https://doi.org/10.1016/S0146-6380(00)00124-8
Pesaro, M., Widmer, F., Nicollier, G., & Zeyer, J. (2003). Effects of freeze-thaw stress during soil storage on microbial communities and methidathion degradation. Soil Biology and Biochemistry, 35(8), 1049-1061. https://doi.org/10.1016/S0038-0717(03)00147-0
Ribas, D., Calderer, M., Martí, V., & Rovira, M. (2013). Effect of different seasonal conditions on the potential of wetland soils for groundwater denitrification. Desalination and Water Treatment, 53(4), 994-1000. https://doi.org/10.1080/19443994.2013.871344
Risk, N., Snider, D., & Wagner-Riddle, C. (2013). Mechanisms leading to enhanced soil nitrous oxide fluxes induced by freeze-thaw cycles. Canadian Journal of Soil Science, 93(4), 401-414. https://doi.org/10.4141/CJSS2012-071
Rosenzweig, B. R., Smith, J. A., Baeck, M. L., & Jaffé, P. R. (2011). Monitoring nitrogen loading and retention in an urban stormwater detention pond. Journal of Environment Quality, 40(2), 598-609. https://doi.org/10.2134/jeq2010.0300
Ruan, L., & Robertson, G. (2017). Reduced snow cover increases wintertime nitrous oxide (N2O) emissions from an agricultural soil in the upper U.S. Midwest. Ecosystems, 20, 917-927. https://doi.org/10.1007/s10021-016-0077-9
Sang, C., Xia, Z., Sun, L., Sun, H., Jiang, P., Wang, C., & Bal, E. (2021). Responses of soil microbial communities to freeze-thaw cycles in a Chinese temperate forest. Ecological Processes, 10, 66. https://doi.org/10.1186/s13717-021-00337-x
Scheer, C., Fuchs, K., Pelster, D., & Butterbach-Bahl, K. (2020). Estimating global terrestrial denitrification from measured N2O:(N2O + N2) product ratios. Current Opinion in Environmental Sustainability, 47, 72-80. https://doi.org/10.1016/j.cosust.2020.07.005
Schimel, J. P., & Clein, J. S. (1996). Microbial response to freeze-thaw cycles in tundra and taiga soils. Soil Biology and Biochemistry, 28(8), 1061-1066. https://doi.org/10.1016/0038-0717(96)00083-1
Seitzinger, S., Harrison, J. a., Böhlke, J. K., Bouwman, a. F., Lowrance, R., Peterson, B., Tobias, C., & Van Drecht, G. (2006). Denitrification across landscapes and waterscapes: A synthesis. Ecological Applications, 16(6), 2064-2090. https://doi.org/10.1890/1051-0761(2006)0162064:DALAWA2.0.CO;2
Sharma, S., Szele, Z., Schilling, R., Munch, J. C., & Schloter, M. (2006). Influence of freeze-thaw stress on the structure and function of microbial communities and denitrifying populations in soil. Applied and Environmental Microbiology, 72, 2148-2154. https://doi.org/10.1128/AEM.72.3.2148-2154.2006
Shibata, H. (2016). Impact of winter climate change on nitrogen biogeochemistry in forest ecosystems: A synthesis from Japanese case studies. Ecological Indicators, 65, 4-9. https://doi.org/10.1016/j.ecolind.2015.10.063
Song, C., Wang, Y., Wang, Y., & Zhao, Z. (2006). Emission of CO2, CH4 and N2O from freshwater marsh during freeze-thaw period in northeast of China. Atmospheric Environment, 40(35), 6879-6885. https://doi.org/10.1016/j.atmosenv.2005.08.028
Sorensen, P. O., Templer, P. H., & Finzi, A. C. (2016). Contrasting effects of winter snowpack and soil frost on growing season microbial biomass and enzyme activity in two mixed-hardwood forests. Biogeochemistry, 128(1-2), 141-154. https://doi.org/10.1007/s10533-016-0199-3
Teepe, R., Brumme, R., & Beese, F. (2001). Nitrous oxide emissions from soil during freezing and thawing periods. Soil Biology and Biochemistry, 33(9), 1269-1275. https://doi.org/10.1016/S0038-0717(01)00084-0
van der Kamp, G., Hayashi, M., & Gallén, D. (2003). Comparing the hydrology of grassed and cultivated catchments in the semi-arid Canadian prairies. Hydrological Processes, 17(3), 559-575. https://doi.org/10.1002/hyp.1157
Wagner-Riddle, C., Congreves, K., Abalos, D., Berg, A., Brown, S., Ambadan, J., Gao, X., & Tenuta, M. (2017). Globally important nitrous oxide emissions from croplands induced by freeze-thaw cycles. Nature Geoscience, 10, 279-283. https://doi.org/10.1038/ngeo2907
Walsh, C. J., Roy, A. H., Feminella, J. W., Cottingham, P. D., Groffman, P. M., & Morgan, R. P. (2005). The urban stream syndrome: Current knowledge and the search for a cure. Freshwater Science, 24(3), 706-723. https://doi.org/10.1899/04-028.1
Werker, A. G., Dougherty, J. M., McHenry, J. L., & Van Loon, W. A. (2002). Treatment variability for wetland wastewater treatment design in cold climates. Ecological Engineering, 19(1), 1-11. https://doi.org/10.1016/S0925-8574(02)00016-2
Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R., & Mopper, K. (2003). Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environmental Science & Technology, 37, 4702-4708. https://doi.org/10.1021/es030360x
Whitfield, C., Casson, N., North, R., Venkiteswaran, J., Ahmed, O., Leathers, J., Nugent, K., Prentice, T., & Baulch, H. (2019). The effect of freeze-thaw cycles on phosphorus release from riparian macrophytes in cold regions. Canadian Water Resources Journal, 44(2), 160-173. https://doi.org/10.1080/07011784.2018.1558115
Yanai, Y., Toyota, K., & Okazaki, M. (2004). Effects of successive soil freeze-thaw cycles on soil microbial biomass and organic matter decomposition potential of soils. Soil Science and Plant Nutrition, 50, 821-829. https://doi.org/10.1080/00380768.2004.10408542
Yanai, Y., Toyota, K., & Okazaki, M. (2007). Response of denitrifying communities to successive soil freeze-thaw cycles. Biology and Fertility of Soils, 44(1), 113-119. https://doi.org/10.1007/s00374-007-0185-y
Yu, X., Zou, Y., Jiang, M., Lu, X., & Wang, G. (2011). Response of soil constituents to freeze-thaw cycles in wetland soil solution. Soil Biology and Biochemistry, 43(6), 1308-1320. https://doi.org/10.1016/j.soilbio.2011.03.002
Zsolnay, A., Baigar, E., Jimenez, M., Steinweg, B., & Saccomandi, F. (1999). Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere, 38, 45-50. https://doi.org/10.1016/S0045-6535(98)00166-0

Auteurs

Kimberly Gilmour (K)

Dep. of Biology, Univ. of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada.
Global Institute for Water Security National Hydrology Research Centre, 11 Innovation Blvd, Saskatoon, SK, S7N 3H5, Canada.

Cameron Hoggarth (C)

Global Institute for Water Security National Hydrology Research Centre, 11 Innovation Blvd, Saskatoon, SK, S7N 3H5, Canada.

Clayton Williams (C)

Dep. of Environmental Studies and Science, Saint Michael's College, One Winooski Park, Colchester, VT 05439, USA.

Helen M Baulch (HM)

Global Institute for Water Security National Hydrology Research Centre, 11 Innovation Blvd, Saskatoon, SK, S7N 3H5, Canada.
School of Environment and Sustainability, Univ. of Saskatchewan, 117 Science Place, Saskatoon, SK, S7N 5C8, Canada.

Articles similaires

Lakes Salinity Archaea Bacteria Microbiota
Foraminifera France Bays Environmental Monitoring Geologic Sediments
Wetlands Massachusetts Chlorides Groundwater Environmental Monitoring
Chromosomes, Plant Genome, Plant Molecular Sequence Annotation Rhizophoraceae Wetlands

Classifications MeSH