Longitudinal Tracing of Lyssavirus Infection in Mice via In Vivo Bioluminescence Imaging.

Australian bat lyssavirus (ABLV) Bioluminescence imaging (BLI) In vivo imaging Longitudinal studies Luciferase Lyssavirus Mice Rabies

Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2022
Historique:
entrez: 13 7 2022
pubmed: 14 7 2022
medline: 15 7 2022
Statut: ppublish

Résumé

Bioluminescence imaging (BLI) is a technique that can be employed to quantify biological processes in living cells. When used in small animal models such as mice, BLI can provide both longitudinal and positional information regarding the biological process under investigation. Although perhaps best known for its utility in non-invasively quantifying tumor burden over time in experimental animals, BLI has also been applied in many pathogenesis models to track pathogen burden and responses to therapeutic interventions. In this chapter, we present a BLI-based method for tracing anatomical progression of lyssavirus infection in a mouse model. We also include validation methods to ensure that semiquantitative BLI data correlate well with viral load. Due to the longitudinal nature of this approach, lyssavirus pathogenesis and therapeutic intervention studies can be performed with far fewer animals than more traditional approaches, which typically require euthanasia of large animal groups at every data collection time point.

Identifiants

pubmed: 35821488
doi: 10.1007/978-1-0716-2453-1_30
doi:

Types de publication

Journal Article Research Support, U.S. Gov't, Non-P.H.S. Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

369-394

Subventions

Organisme : NIGMS NIH HHS
ID : U01 GM109887
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI125552
Pays : United States

Informations de copyright

© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Adams ST Jr, Miller SC (2014) Beyond D-luciferin: expanding the scope of bioluminescence imaging in vivo. Curr Opin Chem Biol 21:112–120. https://doi.org/10.1016/j.cbpa.2014.07.003
doi: 10.1016/j.cbpa.2014.07.003 pubmed: 25078002
Kim JE, Kalimuthu S, Ahn BC (2015) In vivo cell tracking with bioluminescence imaging. Nucl Med Mol Imaging 49(1):3–10. https://doi.org/10.1007/s13139-014-0309-x
doi: 10.1007/s13139-014-0309-x pubmed: 25774232
Sadikot RT, Blackwell TS (2008) Bioluminescence: imaging modality for in vitro and in vivo gene expression. Methods Mol Biol 477:383–394. https://doi.org/10.1007/978-1-60327-517-0_29
doi: 10.1007/978-1-60327-517-0_29 pubmed: 19082962
Luker KE, Luker GD (2008) Applications of bioluminescence imaging to antiviral research and therapy: multiple luciferase enzymes and quantitation. Antivir Res 78(3):179–187. https://doi.org/10.1016/j.antiviral.2008.01.158
doi: 10.1016/j.antiviral.2008.01.158 pubmed: 18358543
Kuo C, Coquoz O, Troy TL, Xu H, Rice BW (2007) Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging. J Biomed Opt 12(2):024007. https://doi.org/10.1117/1.2717898
doi: 10.1117/1.2717898 pubmed: 17477722
Wang G, Cong W, Shen H, Qian X, Henry M, Wang Y (2008) Overview of bioluminescence tomography–a new molecular imaging modality. Front Biosci 13:1281–1293. https://doi.org/10.2741/2761
doi: 10.2741/2761 pubmed: 17981629
Shi J, Udayakumar TS, Wang Z, Dogan N, Pollack A, Yang Y (2017) Optical molecular imaging-guided radiation therapy part 1: integrated x-ray and bioluminescence tomography. Med Phys 44(9):4786–4794. https://doi.org/10.1002/mp.12415
doi: 10.1002/mp.12415 pubmed: 28627007
Zhang B, Yin W, Liu H, Xu C, Wang H (2018) Bioluminescence tomography with structural information estimated via statistical mouse atlas registration. Biomed Opt Express 9(8):3544–3558
doi: 10.1364/BOE.9.003544
Li S, Ruan Z, Zhang H, Xu H (2021) Recent achievements of bioluminescence imaging based on firefly luciferin-luciferase system. Eur J Med Chem 211:113111. https://doi.org/10.1016/j.ejmech.2020.113111
doi: 10.1016/j.ejmech.2020.113111 pubmed: 33360804
Avci P, Karimi M, Sadasivam M, Antunes-Melo WC, Carrasco E, Hamblin MR (2018) In-vivo monitoring of infectious diseases in living animals using bioluminescence imaging. Virulence 9(1):28–63. https://doi.org/10.1080/21505594.2017.1371897
doi: 10.1080/21505594.2017.1371897 pubmed: 28960132
Cook SH, Griffin DE (2003) Luciferase imaging of a neurotropic viral infection in intact animals. J Virol 77(9):5333–5338. https://doi.org/10.1128/jvi.77.9.5333-5338.2003
doi: 10.1128/jvi.77.9.5333-5338.2003 pubmed: 12692235 pmcid: 153972
Luker GD, Bardill JP, Prior JL, Pica CM, Piwnica-Worms D, Leib DA (2002) Noninvasive bioluminescence imaging of herpes simplex virus type 1 infection and therapy in living mice. J Virol 76(23):12149–12161. https://doi.org/10.1128/jvi.76.23.12149-12161.2002
doi: 10.1128/jvi.76.23.12149-12161.2002 pubmed: 12414955 pmcid: 136903
Luker KE, Hutchens M, Schultz T, Pekosz A, Luker GD (2005) Bioluminescence imaging of vaccinia virus: effects of interferon on viral replication and spread. Virology 341(2):284–300. https://doi.org/10.1016/j.virol.2005.06.049
doi: 10.1016/j.virol.2005.06.049 pubmed: 16095645
Mastraccio KE, Huaman C, Warrilow D, Smith GA, Craig SB, Weir DL, Laing ED, Smith IL, Broder CC, Schaefer BC (2020) Establishment of a longitudinal pre-clinical model of lyssavirus infection. J Virol Methods 281:113882. https://doi.org/10.1016/j.jviromet.2020.113882
doi: 10.1016/j.jviromet.2020.113882 pubmed: 32407866 pmcid: 8056983
Patterson M, Poussard A, Taylor K, Seregin A, Smith J, Peng BH, Walker A, Linde J, Smith J, Salazar M, Paessler S (2011) Rapid, non-invasive imaging of alphaviral brain infection: reducing animal numbers and morbidity to identify efficacy of potential vaccines and antivirals. Vaccine 29(50):9345–9351. https://doi.org/10.1016/j.vaccine.2011.09.130
doi: 10.1016/j.vaccine.2011.09.130 pubmed: 22001884 pmcid: 3236093
Hemachudha T, Ugolini G, Wacharapluesadee S, Sungkarat W, Shuangshoti S, Laothamatas J (2013) Human rabies: neuropathogenesis, diagnosis, and management. Lancet Neurol 12(5):498–513. https://doi.org/10.1016/S1474-4422(13)70038-3
doi: 10.1016/S1474-4422(13)70038-3 pubmed: 23602163
Fooks AR, Cliquet F, Finke S, Freuling C, Hemachudha T, Mani RS, Muller T, Nadin-Davis S, Picard-Meyer E, Wilde H, Banyard AC (2017) Rabies. Nat Rev Dis Primers 3:17091. https://doi.org/10.1038/nrdp.2017.91
doi: 10.1038/nrdp.2017.91 pubmed: 29188797
Singh R, Singh KP, Cherian S, Saminathan M, Kapoor S, Manjunatha Reddy GB, Panda S, Dhama K (2017) Rabies – epidemiology, pathogenesis, public health concerns and advances in diagnosis and control: a comprehensive review. Vet Q 37(1):212–251. https://doi.org/10.1080/01652176.2017.1343516
doi: 10.1080/01652176.2017.1343516 pubmed: 28643547
Ugolini G, Hemachudha T (2018) Rabies: changing prophylaxis and new insights in pathophysiology. Curr Opin Infect Dis 31(1):93–101. https://doi.org/10.1097/QCO.0000000000000420
doi: 10.1097/QCO.0000000000000420 pubmed: 29293476
Charlton KM, Nadin-Davis S, Casey GA, Wandeler AI (1997) The long incubation period in rabies: delayed progression of infection in muscle at the site of exposure. Acta Neuropathol 94(1):73–77. https://doi.org/10.1007/s004010050674
doi: 10.1007/s004010050674 pubmed: 9224533
Gillet JP, Derer P, Tsiang H (1986) Axonal transport of rabies virus in the central nervous system of the rat. J Neuropathol Exp Neurol 45(6):619–634. https://doi.org/10.1097/00005072-198611000-00002
doi: 10.1097/00005072-198611000-00002 pubmed: 2430067
Velandia-Romero ML, Castellanos JE, Martinez-Gutierrez M (2013) In vivo differential susceptibility of sensory neurons to rabies virus infection. J Neurovirol. https://doi.org/10.1007/s13365-013-0179-5
Hanlon CA, Smith JS, Anderson GR (1999) Recommendations of a national working group on prevention and control of rabies in the United States. Article II: laboratory diagnosis of rabies. The National Working Group on Rabies Prevention and Control. J Am Vet Med Assoc 215(10):1444–1446
pubmed: 10579039
Jackson AC, Ye H, Phelan CC, Ridaura-Sanz C, Zheng Q, Li Z, Wan X, Lopez-Corella E (1999) Extraneural organ involvement in human rabies. Lab Investig 79(8):945–951
pubmed: 10462032
Fischman HR, Schaeffer M (1971) Pathogenesis of experimental rabies as revealed by immunofluorescence. Ann N Y Acad Sci 177:78–97. https://doi.org/10.1111/j.1749-6632.1971.tb35035.x
doi: 10.1111/j.1749-6632.1971.tb35035.x pubmed: 4945681
Jackson AC (1991) Biological basis of rabies virus neurovirulence in mice: comparative pathogenesis study using the immunoperoxidase technique. J Virol 65(1):537–540. https://doi.org/10.1128/JVI.65.1.537-540.1991
doi: 10.1128/JVI.65.1.537-540.1991 pubmed: 1985216 pmcid: 240553
Schumacher CL, Dietzschold B, Ertl HC, Niu HS, Rupprecht CE, Koprowski H (1989) Use of mouse anti-rabies monoclonal antibodies in postexposure treatment of rabies. J Clin Invest 84(3):971–975. https://doi.org/10.1172/JCI114260
doi: 10.1172/JCI114260 pubmed: 2760222 pmcid: 329743
Healy DM, Brookes SM, Banyard AC, Nunez A, Cosby SL, Fooks AR (2013) Pathobiology of rabies virus and the European bat lyssaviruses in experimentally infected mice. Virus Res 172(1–2):46–53. https://doi.org/10.1016/j.virusres.2012.12.011
doi: 10.1016/j.virusres.2012.12.011 pubmed: 23274107
Gould AR, Hyatt AD, Lunt R, Kattenbelt JA, Hengstberger S, Blacksell SD (1998) Characterisation of a novel lyssavirus isolated from Pteropid bats in Australia. Virus Res 54(2):165–187. https://doi.org/10.1016/s0168-1702(98)00025-2
doi: 10.1016/s0168-1702(98)00025-2 pubmed: 9696125
Allworth A, Murray K, Morgan J (1996) A human case of encephalitis due to a Lyssavirus recently identified in fruit bats. Commun Dis Intell 20:504
Francis JR, Nourse C, Vaska VL, Calvert S, Northill JA, McCall B, Mattke AC (2014) Australian bat lyssavirus in a child: the first reported case. Pediatrics 133(4):e1063–e1067. https://doi.org/10.1542/peds.2013-1782
doi: 10.1542/peds.2013-1782 pubmed: 24590754
Hanna JN, Carney IK, Smith GA, Tannenberg AE, Deverill JE, Botha JA, Serafin IL, Harrower BJ, Fitzpatrick PF, Searle JW (2000) Australian bat lyssavirus infection: a second human case, with a long incubation period. Med J Aust 172(12):597–599. https://doi.org/10.5694/j.1326-5377.2000.tb124126.x
doi: 10.5694/j.1326-5377.2000.tb124126.x pubmed: 10914106
Yamada K, Noguchi K, Kimitsuki K, Kaimori R, Saito N, Komeno T, Nakajima N, Furuta Y, Nishizono A (2019) Reevaluation of the efficacy of favipiravir against rabies virus using in vivo imaging analysis. Antivir Res 172:104641. https://doi.org/10.1016/j.antiviral.2019.104641
doi: 10.1016/j.antiviral.2019.104641 pubmed: 31672666
Albertini AA, Ruigrok RW, Blondel D (2011) Rabies virus transcription and replication. Adv Virus Res 79:1–22. https://doi.org/10.1016/B978-0-12-387040-7.00001-9
doi: 10.1016/B978-0-12-387040-7.00001-9 pubmed: 21601039
Inoue K, Shoji Y, Kurane I, Iijima T, Sakai T, Morimoto K (2003) An improved method for recovering rabies virus from cloned cDNA. J Virol Methods 107(2):229–236. https://doi.org/10.1016/s0166-0934(02)00249-5
doi: 10.1016/s0166-0934(02)00249-5 pubmed: 12505638
de Wet JR, Wood KV, DeLuca M, Helinski DR, Subramani S (1987) Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol 7(2):725–737. https://doi.org/10.1128/mcb.7.2.725-737.1987
doi: 10.1128/mcb.7.2.725-737.1987 pubmed: 3821727 pmcid: 365129
Koo V, Hamilton PW, Williamson K (2006) Non-invasive in vivo imaging in small animal research. Cell Oncol 28(4):127–139. https://doi.org/10.1155/2006/245619
doi: 10.1155/2006/245619 pubmed: 16988468 pmcid: 4617494

Auteurs

Kate E Mastraccio (KE)

Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA.
David Axelrod Institute, Wadsworth Center, NYS Department of Health, Albany, NY, USA.

Celeste Huaman (C)

Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA.

Eric D Laing (ED)

Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA.

Christopher C Broder (CC)

Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA.

Brian C Schaefer (BC)

Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA. Brian.Schaefer@usuhs.edu.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH