Impaired astrocytic Ca
Alzheimer's disease
astrocytes
calcium imaging
mouse
neuroscience
norepinephrine
Journal
eLife
ISSN: 2050-084X
Titre abrégé: Elife
Pays: England
ID NLM: 101579614
Informations de publication
Date de publication:
14 07 2022
14 07 2022
Historique:
received:
28
10
2021
accepted:
29
06
2022
pubmed:
15
7
2022
medline:
6
8
2022
entrez:
14
7
2022
Statut:
epublish
Résumé
Increased astrocytic Ca Neurodegenerative conditions such as Parkinson’s or Alzheimer’s disease are characterized by neurons dying and being damaged. Yet neurons are only one type of brain actors; astrocytes, for example, are star-shaped ‘companion’ cells that have recently emerged as being able to fine-tune neuronal communication. In particular, they can respond to norepinephrine, a signaling molecule that acts to prepare the brain and body for action. This activation results, for instance, in astrocytes releasing chemicals that can act on neurons. Certain cognitive symptoms associated with Alzheimer’s disease could be due to a lack of norepinephrine. In parallel, studies in anaesthetized mice have shown perturbed astrocyte signaling in a model of the condition. Disrupted norepinephrine-triggered astrocyte signaling could therefore be implicated in the symptoms of the disease. Experiments in awake mice are needed to investigate this link, especially as anesthesia is known to disrupt the activity of astrocytes. To explore this question, Åbjørsbråten, Skaaraas et al. conducted experiments in naturally behaving mice expressing mutations found in patients with early-onset Alzheimer’s disease. These mice develop hallmarks of the disorder. Compared to their healthy counterparts, these animals had reduced astrocyte signaling when running or being startled. Similarly, a fluorescent molecular marker for norepinephrine demonstrated less signaling in the modified mice compared to healthy ones. Over 55 million individuals currently live with Alzheimer’s disease. The results by Åbjørsbråten, Skaaraas et al. suggest that astrocyte–norepinephrine communication may be implicated in the condition, an avenue of research that could potentially lead to developing new treatments.
Autres résumés
Type: plain-language-summary
(eng)
Neurodegenerative conditions such as Parkinson’s or Alzheimer’s disease are characterized by neurons dying and being damaged. Yet neurons are only one type of brain actors; astrocytes, for example, are star-shaped ‘companion’ cells that have recently emerged as being able to fine-tune neuronal communication. In particular, they can respond to norepinephrine, a signaling molecule that acts to prepare the brain and body for action. This activation results, for instance, in astrocytes releasing chemicals that can act on neurons. Certain cognitive symptoms associated with Alzheimer’s disease could be due to a lack of norepinephrine. In parallel, studies in anaesthetized mice have shown perturbed astrocyte signaling in a model of the condition. Disrupted norepinephrine-triggered astrocyte signaling could therefore be implicated in the symptoms of the disease. Experiments in awake mice are needed to investigate this link, especially as anesthesia is known to disrupt the activity of astrocytes. To explore this question, Åbjørsbråten, Skaaraas et al. conducted experiments in naturally behaving mice expressing mutations found in patients with early-onset Alzheimer’s disease. These mice develop hallmarks of the disorder. Compared to their healthy counterparts, these animals had reduced astrocyte signaling when running or being startled. Similarly, a fluorescent molecular marker for norepinephrine demonstrated less signaling in the modified mice compared to healthy ones. Over 55 million individuals currently live with Alzheimer’s disease. The results by Åbjørsbråten, Skaaraas et al. suggest that astrocyte–norepinephrine communication may be implicated in the condition, an avenue of research that could potentially lead to developing new treatments.
Identifiants
pubmed: 35833623
doi: 10.7554/eLife.75055
pii: 75055
pmc: PMC9352348
doi:
pii:
Substances chimiques
Norepinephrine
X4W3ENH1CV
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : NINDS NIH HHS
ID : F32 NS009021
Pays : United States
Informations de copyright
© 2022, Åbjørsbråten, Skaaraas et al.
Déclaration de conflit d'intérêts
KÅ, GS, CC, DB, KB, LB, VJ, LN, SR, WT, GH, EN, OO, RT, RE No competing interests declared
Références
Brain Res Bull. 1976 Mar-Apr;1(2):229-34
pubmed: 824030
Nat Neurosci. 2019 Nov;22(11):1936-1944
pubmed: 31570865
Proc Natl Acad Sci U S A. 2011 Nov 8;108(45):18453-8
pubmed: 22027012
Nature. 2008 Feb 7;451(7179):720-4
pubmed: 18256671
Cereb Cortex. 2008 Dec;18(12):2789-95
pubmed: 18372288
Mol Ther. 2009 Nov;17(11):1888-96
pubmed: 19532142
Science. 2009 Feb 27;323(5918):1211-5
pubmed: 19251629
Brain Res. 2003 Dec 19;994(1):99-106
pubmed: 14642453
J Neurosci Methods. 2017 Nov 1;291:83-94
pubmed: 28782629
Behav Brain Res. 2010 Dec 20;215(1):83-94
pubmed: 20615433
Neurochem Res. 2017 Jun;42(6):1810-1822
pubmed: 28210958
Nat Metab. 2020 Feb;2(2):179-191
pubmed: 32694692
Nature. 2018 Jan 25;553(7689):455-460
pubmed: 29342142
J Exp Med. 2018 Jun 4;215(6):1649-1663
pubmed: 29724785
J Neurosci. 2015 Feb 18;35(7):3016-21
pubmed: 25698739
Biochim Biophys Acta Biomembr. 2021 Aug 1;1863(8):183616
pubmed: 33872576
J Alzheimers Dis. 2021;83(4):1651-1663
pubmed: 34459401
Cancer Res. 2004 Aug 1;64(15):5245-50
pubmed: 15289330
Science. 2017 May 19;356(6339):
pubmed: 28522470
Acta Neuropathol. 2021 May;141(5):631-650
pubmed: 33427939
Neuron. 2018 May 16;98(4):726-735.e4
pubmed: 29706581
Cold Spring Harb Perspect Biol. 2019 Jul 1;11(7):
pubmed: 31110130
Trends Neurosci. 2018 Apr;41(4):211-223
pubmed: 29475564
Nat Neurosci. 2020 Oct;23(10):1229-1239
pubmed: 32747787
J Neurochem. 1989 Dec;53(6):1772-81
pubmed: 2553864
Acta Neuropathol. 2011 Feb;121(2):171-81
pubmed: 21170538
Neuron. 2016 Jan 6;89(1):8-10
pubmed: 26748086
Sci Signal. 2012 Apr 03;5(218):ra26
pubmed: 22472648
Cell Calcium. 2013 Dec;54(6):387-94
pubmed: 24138901
Sci Transl Med. 2021 Sep 22;13(612):eabj2511
pubmed: 34550726
Brain. 2021 Sep 4;144(8):2243-2256
pubmed: 33725122
Front Cell Neurosci. 2021 Feb 25;15:645691
pubmed: 33716677
Nat Commun. 2020 Dec 2;11(1):6157
pubmed: 33268792
Neurochem Res. 2012 Nov;37(11):2496-512
pubmed: 22717696
Exp Physiol. 2005 Jan;90(1):53-9
pubmed: 15542619
Proc Natl Acad Sci U S A. 2012 Nov 13;109(46):18974-9
pubmed: 23112168
Elife. 2022 Jul 14;11:
pubmed: 35833623
Nat Methods. 2012 Jun 28;9(7):676-82
pubmed: 22743772
Neuroscience. 2016 May 26;323:170-82
pubmed: 25595973
Nature. 2013 Jul 18;499(7458):295-300
pubmed: 23868258
Nat Commun. 2016 Nov 08;7:13289
pubmed: 27824036
Nat Commun. 2014 Nov 19;5:5422
pubmed: 25406732
Proc Natl Acad Sci U S A. 2016 May 10;113(19):E2675-84
pubmed: 27122314
Neurobiol Aging. 2006 Jan;27(1):67-77
pubmed: 16298242
Neurobiol Aging. 2009 Sep;30(9):1393-405
pubmed: 18192084
Physiol Rev. 2020 Jan 1;100(1):271-320
pubmed: 31512990
Neuron. 2019 May 22;102(4):745-761.e8
pubmed: 30922875
J Alzheimers Dis. 2011;27(4):711-22
pubmed: 21891870
Nat Commun. 2020 Jul 6;11(1):3240
pubmed: 32632168
Front Cell Neurosci. 2021 May 20;15:681066
pubmed: 34093134
Nat Neurosci. 2015 May;18(5):708-17
pubmed: 25894291
Cell Rep. 2017 Sep 26;20(13):3099-3112
pubmed: 28954227
PLoS One. 2009;4(1):e4286
pubmed: 19172189
J Neuropathol Exp Neurol. 2002 Sep;61(9):797-805
pubmed: 12230326
Bioinformatics. 2011 Sep 1;27(17):2453-4
pubmed: 21727141
Nat Neurosci. 2021 Mar;24(3):312-325
pubmed: 33589835
Neuron. 2018 Oct 24;100(2):361-374
pubmed: 30359602
Int J Mol Sci. 2019 Feb 25;20(4):
pubmed: 30823575
JCI Insight. 2021 May 10;6(9):
pubmed: 33830944
Neuromolecular Med. 2003;3(3):173-80
pubmed: 12835512
Neurosci Lett. 1989 Nov 20;106(1-2):233-8
pubmed: 2555749
Brain Struct Funct. 2017 May;222(4):1989-1999
pubmed: 27696155
Glia. 2013 Jul;61(7):1134-45
pubmed: 23616440
J Neurosci. 2003 Jun 15;23(12):5088-95
pubmed: 12832532
Biochim Biophys Acta. 2004 Dec 6;1742(1-3):81-7
pubmed: 15590058
Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17513-8
pubmed: 17090684
Cold Spring Harb Perspect Biol. 2014 Dec 11;7(3):a020438
pubmed: 25502516
Front Aging Neurosci. 2018 May 01;10:127
pubmed: 29765316
Nat Neurosci. 2020 Jun;23(6):701-706
pubmed: 32341542
Neurobiol Aging. 2014 Mar;35(3):556-64
pubmed: 24126157
Neuron. 2014 Jun 18;82(6):1263-70
pubmed: 24945771
Cell. 2018 Jun 28;174(1):59-71.e14
pubmed: 29804835
Elife. 2021 Mar 17;10:
pubmed: 33729913