TCA cycle enhancement and uptake of monomeric substrates support growth of marine Roseobacter at low temperature.
Journal
Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179
Informations de publication
Date de publication:
14 07 2022
14 07 2022
Historique:
received:
15
11
2021
accepted:
24
06
2022
entrez:
14
7
2022
pubmed:
15
7
2022
medline:
19
7
2022
Statut:
epublish
Résumé
Members of the marine Roseobacter group are ubiquitous in global oceans, but their cold-adaptive strategies have barely been studied. Here, as represented by Loktanella salsilacus strains enriched in polar regions, we firstly characterized the metabolic features of a cold-adapted Roseobacter by multi-omics, enzyme activities, and carbon utilization procedures. Unlike in most cold-adapted microorganisms, the TCA cycle is enhanced by accumulating more enzyme molecules, whereas genes for thiosulfate oxidation, sulfate reduction, nitrate reduction, and urea metabolism are all expressed at lower abundance when L. salsilacus was growing at 5 °C in comparison with higher temperatures. Moreover, a carbon-source competition experiment has evidenced the preferential use of glucose rather than sucrose at low temperature. This selective utilization is likely to be controlled by the carbon source uptake and transformation steps, which also reflects an economic calculation balancing energy production and functional plasticity. These findings provide a mechanistic understanding of how a Roseobacter member and possibly others as well counteract polar constraints.
Identifiants
pubmed: 35835984
doi: 10.1038/s42003-022-03631-2
pii: 10.1038/s42003-022-03631-2
pmc: PMC9283371
doi:
Substances chimiques
Carbon
7440-44-0
Banques de données
figshare
['10.6084/m9.figshare.19669572']
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
705Informations de copyright
© 2022. The Author(s).
Références
Casanueva, A., Tuffin, M., Cary, C. & Cowan, D. A. Molecular adaptations to psychrophily: The impact of ‘omic’ technologies. Trends Microbiol. 18, 374–381 (2010).
pubmed: 20646925
doi: 10.1016/j.tim.2010.05.002
De, Maayer, P., Anderson, D., Cary, C. & Cowan, D. A. Some like it cold: Understanding the survival strategies of psychrophiles. Embo. Rep. 15, 508–517 (2014).
pubmed: 24671034
pmcid: 4210084
doi: 10.1002/embr.201338170
Verde, C., Giordano, D., Bellas, C. M., di, Prisco, G. & Anesio, A. M. Polar marine microorganisms and climate change. Adv. Microb. Physiol. 69, 187–215 (2016).
pubmed: 27720011
doi: 10.1016/bs.ampbs.2016.07.002
Kirchman, D. L., Moran, X. A. & Ducklow, H. Microbial growth in the polar oceans—role of temperature and potential impact of climate change. Nat. Rev. Microbiol. 7, 451–459 (2009).
pubmed: 19421189
doi: 10.1038/nrmicro2115
Zhang, Y. et al. A stress response that monitors and regulates mRNA structure is central to cold shock adaptation. Mol. Cell. 70, 274–286 (2018).
pubmed: 29628307
pmcid: 5910227
doi: 10.1016/j.molcel.2018.02.035
Czajka, J. J. et al. Model metabolic strategy for heterotrophic bacteria in the cold ocean based on Colwellia psychrerythraea 34H. Proc. Natl Acad. Sci. USA 115, 12507–12512 (2018).
pubmed: 30446608
pmcid: 6298072
doi: 10.1073/pnas.1807804115
Methe, B. A. et al. The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc. Natl Acad. Sci. USA 102, 10913–10918 (2005).
pubmed: 16043709
pmcid: 1180510
doi: 10.1073/pnas.0504766102
Mykytczuk, N. C. et al. Bacterial growth at -15 degrees C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME J. 7, 1211–1226 (2016).
doi: 10.1038/ismej.2013.8
Parrilli, E. et al. The art of adapting to extreme environments: The model system Pseudoalteromonas. Phys. Life. Rev. 36, 137–161 (2021).
pubmed: 31072789
doi: 10.1016/j.plrev.2019.04.003
Bakermans, C. Adaptations to marine versus terrestrial low temperature environments as revealed by comparative genomic analyses of the genus. Psychrobacter. Fems. Microbiol. Ecol. 94, 7 (2018).
Koh, H. Y. et al. Proteomic and transcriptomic investigations on cold-responsive properties of the psychrophilic Antarctic bacterium Psychrobacter sp. PAMC 21119 at subzero temperatures. Environ. Microbiol. 19, 628–644 (2017).
pubmed: 27750393
doi: 10.1111/1462-2920.13578
Vollmers, J. et al. Poles apart: Arctic and Antarctic Octadecabacter strains share high genome plasticity and a new type of xanthorhodopsin. PLoS One 8, e63422 (2013).
pubmed: 23671678
pmcid: 3646047
doi: 10.1371/journal.pone.0063422
Wiebe, W. J., Sheldon, W. M. & Pomeroy, L. R. Bacterial growth in the cold: Evidence for an enhanced substrate requirement. Appl. Environ. Microb. 58, 359–364 (1992).
doi: 10.1128/aem.58.1.359-364.1992
Wiebe, W. J., Sheldon, W. M. & Pomeroy, L. R. Evidence for an enhanced substrate requirement by marine mesophilic bacterial isolates at minimal growth temperatures. Microb. Ecol. 25, 151–159 (1993).
pubmed: 24189812
doi: 10.1007/BF00177192
Alonso, C. & Pernthaler, J. Roseobacter and SAR11 dominate microbial glucose uptake in coastal North Sea waters. Environ. Microbiol. 8, 2022–2030 (2006).
pubmed: 17014500
doi: 10.1111/j.1462-2920.2006.01082.x
Buchan, A., Gonzalez, J. M. & Moran, M. A. Overview of the marine roseobacter lineage. Appl. Environ. Microbiol. 71, 5665–5677 (2005).
pubmed: 16204474
pmcid: 1265941
doi: 10.1128/AEM.71.10.5665-5677.2005
Billerbeck, S. et al. Biogeography and environmental genomics of the Roseobacter-affiliated pelagic CHAB-I-5 lineage. Nat. Microbiol. 1, 16063 (2016).
pubmed: 27572966
doi: 10.1038/nmicrobiol.2016.63
Voget, S. et al. Adaptation of an abundant Roseobacter RCA organism to pelagic systems revealed by genomic and transcriptomic analyses. ISME J. 9, 371–384 (2015).
pubmed: 25083934
doi: 10.1038/ismej.2014.134
Luo, H. & Moran, M. A. Evolutionary ecology of the marine Roseobacter clade. Microbiol. Mol. Biol. Rev. 78, 573–587 (2014).
pubmed: 25428935
pmcid: 4248658
doi: 10.1128/MMBR.00020-14
Bramucci, A. R. et al. The bacterial symbiont Phaeobacter inhibens shapes the life history of its algal host Emiliania huxleyi. Front. Mar. Sci. 5, 188 (2018).
doi: 10.3389/fmars.2018.00188
Collins, A. J. et al. Diversity and partitioning of bacterial populations within the accessory nidamental gland of the squid Euprymna scolopes. Appl. Environ. Microbiol. 78, 4200–4208 (2012).
pubmed: 22504817
pmcid: 3370523
doi: 10.1128/AEM.07437-11
Smith, A. F. et al. A novel class of sulfur-containing aminolipids widespread in marine roseobacters. ISME J. 15, 2440–2453 (2021).
pubmed: 33750904
pmcid: 8319176
doi: 10.1038/s41396-021-00933-x
Moran, M. A. et al. Ecological genomics of marine roseobacters. Appl. Environ. Microbiol. 73, 4559–4569 (2007).
pubmed: 17526795
pmcid: 1932822
doi: 10.1128/AEM.02580-06
Brinkmeyer, R. et al. Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Appl. Environ. Microbiol. 69, 6610–6619 (2003).
pubmed: 14602620
pmcid: 262250
doi: 10.1128/AEM.69.11.6610-6619.2003
Gleeson, D. F. et al. Low temperature S(0) biomineralization at a supraglacial spring system in the Canadian High Arctic. Geobiology 9, 360–375 (2011).
pubmed: 21592302
doi: 10.1111/j.1472-4669.2011.00283.x
Lo, G. A., Caruso, C., Mangano, S., V., Bruni., De, D. M. & Michaud, L. Marine bacterioplankton diversity and community composition in an Antarctic coastal environment. Microb. Ecol. 63, 210–223 (2012).
doi: 10.1007/s00248-011-9904-x
Billerbeck, S. et al. Description of Octadecabacter temperatus sp. nov., isolated from the southern North Sea, emended descriptions of the genus Octadecabacter and its species and reclassification of Octadecabacter jejudonensis Park and Yoon 2014 as Pseudooctadecabacter jejudonensis gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 65, 1967–1974 (2015).
pubmed: 25816810
doi: 10.1099/ijs.0.000205
Gosink, J. J., Herwig, R. P. & Staley, J. T. Octadecabacter arcticus gen. nov., sp. nov., and O. antarcticus, sp. nov., nonpigmented, psychrophilic gas vacuolate bacteria from polar sea ice and water. Syst. Appl. Microbiol. 20, 512–512 (1997).
doi: 10.1016/S0723-2020(97)80003-3
Gonzalez, J. M. et al. Silicibacter pomeroyi sp. nov. and Roseovarius nubinhibens sp. nov., dimethylsulfoniopropionate-demethylating bacteria from marine environments. Int. J. Syst. Evol. Microbiol. 53, 1261–1269 (2003).
pubmed: 13130004
doi: 10.1099/ijs.0.02491-0
Biebl, H. et al. Dinoroseobacter shibae gen. nov., sp nov., a new aerobic phototrophic bacterium isolated from dinoflagellates. Int. J. Syst. Evol. Micr. 55, 1089–1096 (2005).
doi: 10.1099/ijs.0.63511-0
Ruiz-Ponte, C., Cilia, V., Lambert, C. & Nicolas, J. L. Roseobacter gallaeciensis sp. nov., a new marine bacterium isolated from rearings and collectors of the scallop Pecten maximus. Int. J. Syst. Bacteriol. 48, 537–542 (1998).
pubmed: 9731295
doi: 10.1099/00207713-48-2-537
Margesin, R. & Schinner, F. Properties of cold-adapted microorganisms and their potential role in biotechnology. J. Biotechnol. 33, 1–14 (1994).
doi: 10.1016/0168-1656(94)90093-0
Topel, M. et al. Complete genome sequence of Loktanella vestfoldensis strain SMR4r, a novel strain isolated from a culture of the chain-forming diatom Skeletonema marinoi. Genome Announc. 6, e01558–17 (2018).
pubmed: 29567748
pmcid: 5864940
doi: 10.1128/genomeA.01558-17
Richter, M. & Rossello-Mora, R. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl Acad. Sci. USA 106, 19126–19131 (2009).
pubmed: 19855009
pmcid: 2776425
doi: 10.1073/pnas.0906412106
Zech, H. et al. Growth phase-dependent global protein and metabolite profiles of Phaeobacter gallaeciensis strain DSM 17395, a member of the marine Roseobacter-clade. Proteomics 9, 3677–3697 (2009).
pubmed: 19639587
doi: 10.1002/pmic.200900120
Cacace, G. et al. Proteomics for the elucidation of cold adaptation mechanisms in Listeria monocytogenes. J. Proteom. 73, 2021–2030 (2010).
doi: 10.1016/j.jprot.2010.06.011
Gueriri, I., Bay, S., Dubrac, S., Cyncynatus, C. & Msadek, T. The Pta-AckA pathway controlling acetyl phosphate levels and the phosphorylation state of the DegU orphan response regulator both play a role in regulating Listeria monocytogenes motility and chemotaxis. Mol. Microbiol. 70, 1342–1357 (2008).
pubmed: 19019159
doi: 10.1111/j.1365-2958.2008.06496.x
Wunsch, D. et al. Amino acid and sugar catabolism in the marine bacterium Phaeobacter inhibens DSM 17395 from an energetic viewpoint. Appl. Environ. Microbiol. 85, e02095–19 (2019).
pubmed: 31604772
pmcid: 6881813
doi: 10.1128/AEM.02095-19
Amon, R. M. W., Fitznar, H. P. & Benner, R. Linkages among the bioreactivity, chemical composition, and diagenetic state of marine dissolved organic matter. Limnol. Oceanogr. 46, 287–297 (2001).
doi: 10.4319/lo.2001.46.2.0287
Engbrodt, R. & Kattner, G. On the biogeochemistry of dissolved carbohydrates in the Greenland Sea (Arctic). Org. Geochem. 36, 937–948 (2005).
doi: 10.1016/j.orggeochem.2004.12.007
Panagiotopoulos, C., Sempéré, R., Jacq, V. & Charrière, B. Composition and distribution of dissolved carbohydrates in the Beaufort Sea Mackenzie margin (Arctic Ocean). Mar. Chem. 166, 92–102 (2014).
doi: 10.1016/j.marchem.2014.09.004
Prasad, S. et al. Diversity and bioprospective potential (cold-active enzymes) of cultivable marine bacteria from the subarctic glacial Fjord, Kongsfjorden. Curr. Microbiol. 68, 233–238 (2014).
pubmed: 24121613
doi: 10.1007/s00284-013-0467-6
Klingner, A. et al. Large-Scale
pubmed: 25616803
pmcid: 4357956
doi: 10.1128/AEM.03157-14
Flamholz, A., Noor, E., Bar-Even, A., Liebermeister, W. & Milo, R. Glycolytic strategy as a tradeoff between energy yield and protein cost. Proc. Natl Acad. Sci. USA 110, 10039–10044 (2013).
pubmed: 23630264
pmcid: 3683749
doi: 10.1073/pnas.1215283110
Chavarria, M., Nikel, P. I., Perez-Pantoja, D. & de, Lorenzo, V. The Entner-Doudoroff pathway empowers Pseudomonas putida KT2440 with a high tolerance to oxidative stress. Environ. Microbiol. 15, 1772–1785 (2013).
pubmed: 23301697
doi: 10.1111/1462-2920.12069
Shimizu, K. & Matsuoka, Y. Redox rebalance against genetic perturbations and modulation of central carbon metabolism by the oxidative stress regulation. Biotechnol. Adv. 37, 107441 (2019).
pubmed: 31472206
doi: 10.1016/j.biotechadv.2019.107441
Laiz, L., Gonzalez-Delvalle, M., Hermosin, B., Ortiz-Martinez, A. & Saiz-Jimenez, C. Isolation of cave bacteria and substrate utilization at different temperatures. Geomicrobiol. J. 20, 479–489 (2003).
doi: 10.1080/713851125
Line, J. E., Hiett, K. L., Guard-Bouldin, J. & Seal, B. S. Differential carbon source utilization by Campylobacter jejuni 11168 in response to growth temperature variation. J. Microbiol. Meth. 80, 198–202 (2010).
doi: 10.1016/j.mimet.2009.12.011
Herbert, R. A. & Bell, C. R. Growth characteristics of an obligately psychrophilic Vibrio sp. Arch. Microbiol. 113, 215–220 (1977).
pubmed: 879962
doi: 10.1007/BF00492028
Giangrossi, M., Giuliodori, A. M., Gualerzi, C. O. & Pon, C. L. Selective expression of the beta-subunit of nucleoid-associated protein HU during cold shock in Escherichia coli. Mol. Microbiol. 44, 205–216 (2002).
pubmed: 11967080
doi: 10.1046/j.1365-2958.2002.02868.x
Brandi, A. et al. Transcriptional and post-transcriptional events trigger de novo infB expression in cold stressed Escherichia coli. Nucleic Acids Res. 47, 4638–4651 (2019).
pubmed: 30916329
pmcid: 6511841
doi: 10.1093/nar/gkz187
Giangrossi, M., Brandi, A., Giuliodori, A. M., Gualerzi, C. O. & Pon, C. L. Cold-shock-induced de novo transcription and translation of infA and role of IF1 during cold adaptation. Mol. Microbiol. 64, 807–821 (2007).
pubmed: 17462025
doi: 10.1111/j.1365-2958.2007.05699.x
Sharma, I. M. & Woodson, S. A. RbfA and IF3 couple ribosome biogenesis and translation initiation to increase stress tolerance. Nucleic Acids Res. 48, 359–372 (2020).
pubmed: 31728529
Lim, H. J., Lee, E. H., Yoon, Y., Chua, B. & Son, A. Portable lysis apparatus for rapid single-step DNA extraction of Bacillus subtilis. J. Appl. Microbiol. 120, 379–387 (2016).
pubmed: 26606545
doi: 10.1111/jam.13011
Stothard, P. & Wishart, D. S. Circular genome visualization and exploration using CGView. Bioinformatics 21, 537–539 (2005).
pubmed: 15479716
doi: 10.1093/bioinformatics/bti054
Salazar, G. et al. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell 179, 1068–1083 (2019).
pubmed: 31730850
pmcid: 6912165
doi: 10.1016/j.cell.2019.10.014
Sunagawa, S. et al. Ocean plankton. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015).
pubmed: 25999513
doi: 10.1126/science.1261359
Patel, R. K. & Jain, M. NGS QC Toolkit: A toolkit for quality control of next generation sequencing data. PLoS One 7, e30619 (2012).
pubmed: 22312429
pmcid: 3270013
doi: 10.1371/journal.pone.0030619
Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: A cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS One 11, e0163962 (2016).
pubmed: 27706213
pmcid: 5051824
doi: 10.1371/journal.pone.0163962
Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).
pubmed: 24642063
doi: 10.1093/bioinformatics/btu153
Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. & Morishima, K. KEGG: New perspectives on genomes, pathways, diseases, and drugs. Nucleic Acids Res. 45, D353–D361 (2017).
pubmed: 27899662
doi: 10.1093/nar/gkw1092
Sawabe, T. et al. Updating the vibrio clades defined by multilocus sequence phylogeny: Proposal of eight new clades, and the description of Vibrio tritonius sp. nov. Front. Microbiol. 4, 414 (2013).
pubmed: 24409173
pmcid: 3873509
doi: 10.3389/fmicb.2013.00414
Sonnenschein, E. C. et al. Global occurrence and heterogeneity of the Roseobacter-clade species Ruegeria mobilis. ISME J. 11, 588 (2017).
pubmed: 28117449
pmcid: 5270566
doi: 10.1038/ismej.2016.125
Wu, M. & Eisen, J. A. A simple, fast, and accurate method of phylogenomic inference. Genome Biol. 9, R151 (2008).
pubmed: 18851752
pmcid: 2760878
doi: 10.1186/gb-2008-9-10-r151
Kumar, S., Nei, M., Dudley, J. & Tamura, K. MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief. Bioinform. 9, 299–306 (2008).
pubmed: 18417537
doi: 10.1093/bib/bbn017
Yu, G. Using ggtree to visualize data on tree-like structures. Curr. Protoc. Bioinform. 69, e96 (2020).
doi: 10.1002/cpbi.96
Yoon, S. H., Ha, S. M., Lim, J., Kwon, S. & Chun, J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van. Leeuwenhoek 110, 1281–1286 (2017).
pubmed: 28204908
doi: 10.1007/s10482-017-0844-4
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
pubmed: 22388286
pmcid: 3322381
doi: 10.1038/nmeth.1923
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943
pmcid: 2723002
doi: 10.1093/bioinformatics/btp352
Chen, Y., Patel, N. A., Crombie, A., Scrivens, J. H. & Murrell, J. C. Bacterial flavin containing monooxygenase is trimethylamine monooxygenase. Proc. Natl Acad. Sci. USA 108, 17791–17796 (2011).
pubmed: 22006322
pmcid: 3203794
doi: 10.1073/pnas.1112928108
Wang, M. et al. The source data of cold-adapted Loktanella salsilacus enriched in polar regions. Figshare https://doi.org/10.6084/m9.figshare.19669572 (2022).