Multiscale optical and optoacoustic imaging of amyloid-β deposits in mice.
Journal
Nature biomedical engineering
ISSN: 2157-846X
Titre abrégé: Nat Biomed Eng
Pays: England
ID NLM: 101696896
Informations de publication
Date de publication:
09 2022
09 2022
Historique:
received:
30
03
2020
accepted:
27
05
2022
pubmed:
15
7
2022
medline:
24
9
2022
entrez:
14
7
2022
Statut:
ppublish
Résumé
Deposits of amyloid-β (Aβ) in the brains of rodents can be analysed by invasive intravital microscopy on a submillimetre scale, or via whole-brain images from modalities lacking the resolution or molecular specificity to accurately characterize Aβ pathologies. Here we show that large-field multifocal illumination fluorescence microscopy and panoramic volumetric multispectral optoacoustic tomography can be combined to longitudinally assess Aβ deposits in transgenic mouse models of Alzheimer's disease. We used fluorescent Aβ-targeted probes (the luminescent conjugated oligothiophene HS-169 and the oxazine-derivative AOI987) to transcranially detect Aβ deposits in the cortex of APP/PS1 and arcAβ mice with single-plaque resolution (8 μm) and across the whole brain (including the hippocampus and the thalamus, which are inaccessible by conventional intravital microscopy) at sub-150 μm resolutions. Two-photon microscopy, light-sheet microscopy and immunohistochemistry of brain-tissue sections confirmed the specificity and regional distributions of the deposits. High-resolution multiscale optical and optoacoustic imaging of Aβ deposits across the entire brain in rodents thus facilitates the in vivo study of Aβ accumulation by brain region and by animal age and strain.
Identifiants
pubmed: 35835994
doi: 10.1038/s41551-022-00906-1
pii: 10.1038/s41551-022-00906-1
doi:
Substances chimiques
Amyloid beta-Peptides
0
Oxazines
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
1031-1044Subventions
Organisme : NINDS NIH HHS
ID : UF1 NS107680
Pays : United States
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Selkoe, D. J. & Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 8, 595–608 (2016).
pubmed: 27025652
pmcid: 4888851
doi: 10.15252/emmm.201606210
Clark, C. M. et al. Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA 305, 275–283 (2011).
pubmed: 21245183
pmcid: 7041965
doi: 10.1001/jama.2010.2008
Curtis, C. et al. Phase 3 trial of flutemetamol labeled with radioactive fluorine 18 imaging and neuritic plaque density. JAMA Neurol. 72, 287–294 (2015).
pubmed: 25622185
doi: 10.1001/jamaneurol.2014.4144
Klunk, W. E. et al. Binding of the positron emission tomography tracer Pittsburgh compound-B reflects the amount of amyloid-beta in Alzheimer’s disease brain but not in transgenic mouse brain. J. Neurosci. 25, 10598–10606 (2005).
pubmed: 16291932
pmcid: 6725842
doi: 10.1523/JNEUROSCI.2990-05.2005
Sabri, O. et al. Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer’s disease: phase 3 study. Alzheimers Dement. 11, 964–974 (2015).
pubmed: 25824567
doi: 10.1016/j.jalz.2015.02.004
Jack, C. R. Jr. et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 14, 535–562 (2018).
pubmed: 29653606
pmcid: 5958625
doi: 10.1016/j.jalz.2018.02.018
Villemagne, V. L., Dore, V., Burnham, S. C., Masters, C. L. & Rowe, C. C. Imaging tau and amyloid-beta proteinopathies in Alzheimer disease and other conditions. Nat. Rev. Neurol. 14, 225–236 (2018).
pubmed: 29449700
doi: 10.1038/nrneurol.2018.9
Jack, C. R. Jr. et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 9, 119–128 (2010).
pubmed: 20083042
pmcid: 2819840
doi: 10.1016/S1474-4422(09)70299-6
Dhenain, M. et al. Characterization of in vivo MRI detectable thalamic amyloid plaques from APP/PS1 mice. Neurobiol. Aging 30, 41–53 (2009).
pubmed: 17588710
doi: 10.1016/j.neurobiolaging.2007.05.018
Higuchi, M. et al. 19F and 1H MRI detection of amyloid beta plaques in vivo. Nat. Neurosci. 8, 527–533 (2005).
pubmed: 15768036
doi: 10.1038/nn1422
Jack, C. R. Jr. et al. In vivo magnetic resonance microimaging of individual amyloid plaques in Alzheimer’s transgenic mice. J. Neurosci. 25, 10041–10048 (2005).
pubmed: 16251453
pmcid: 2744887
doi: 10.1523/JNEUROSCI.2588-05.2005
Gong, N.-J., Dibb, R., Bulk, M., van der Weerd, L. & Liu, C. Imaging beta amyloid aggregation and iron accumulation in Alzheimer’s disease using quantitative susceptibility mapping MRI. NeuroImage 191, 176–185 (2019).
pubmed: 30739060
doi: 10.1016/j.neuroimage.2019.02.019
Dudeffant, C. et al. Contrast-enhanced MR microscopy of amyloid plaques in five mouse models of amyloidosis and in human Alzheimer’s disease brains. Sci. Rep. 7, 4955 (2017).
pubmed: 28694463
pmcid: 5504006
doi: 10.1038/s41598-017-05285-1
Sehlin, D. et al. Antibody-based PET imaging of amyloid beta in mouse models of Alzheimer’s disease. Nat. Commun. 7, 10759 (2016).
pubmed: 26892305
pmcid: 4762893
doi: 10.1038/ncomms10759
Rodriguez-Vieitez, E. et al. Astrocytosis precedes amyloid plaque deposition in Alzheimer APPswe transgenic mouse brain: a correlative positron emission tomography and in vitro imaging study. Eur. J. Nucl. Med. Mol. Imaging 42, 1119–1132 (2015).
pubmed: 25893384
pmcid: 4424277
doi: 10.1007/s00259-015-3047-0
Sacher, C. et al. Longitudinal PET monitoring of amyloidosis and microglial activation in a second-generation amyloid-β mouse model. J. Nucl. Med. 60, 1787–1793 (2019).
pubmed: 31302633
pmcid: 6894380
doi: 10.2967/jnumed.119.227322
Sacher, C. et al. Asymmetry of fibrillar plaque burden in amyloid mouse models. J. Nucl. Med. 61, 1825–1831 (2020).
pubmed: 32414948
doi: 10.2967/jnumed.120.242750
Snellman, A. et al. Applicability of [11C]PIB micro-PET imaging for in vivo follow-up of anti-amyloid treatment effects in APP23 mouse model. Neurobiol. Aging 57, 84–94 (2017).
pubmed: 28605642
doi: 10.1016/j.neurobiolaging.2017.05.008
Mannheim, J. G. et al. PET/MRI hybrid systems. Semin. Nucl. Med. 48, 332–347 (2018).
pubmed: 29852943
doi: 10.1053/j.semnuclmed.2018.02.011
Hintersteiner, M. et al. In vivo detection of amyloid-beta deposits by near-infrared imaging using an oxazine-derivative probe. Nat. Biotechnol. 23, 577–583 (2005).
pubmed: 15834405
doi: 10.1038/nbt1085
Hyde, D. et al. Hybrid FMT-CT imaging of amyloid-beta plaques in a murine Alzheimer’s disease model. NeuroImage 44, 1304–1311 (2009).
pubmed: 19041402
doi: 10.1016/j.neuroimage.2008.10.038
Zhang, X. et al. Near-infrared fluorescence molecular imaging of amyloid beta species and monitoring therapy in animal models of Alzheimer’s disease. Proc. Natl Acad. Sci. USA 112, 9734–9739 (2015).
pubmed: 26199414
pmcid: 4534214
doi: 10.1073/pnas.1505420112
Whitesell, J. D. et al. Whole brain imaging reveals distinct spatial patterns of amyloid beta deposition in three mouse models of Alzheimer’s disease. J. Comp. Neurol. 527, 2122–2145 (2019).
pubmed: 30311654
doi: 10.1002/cne.24555
Bacskai, B. J. et al. Four-dimensional multiphoton imaging of brain entry, amyloid binding, and clearance of an amyloid-β ligand in transgenic mice. Proc. Natl Acad. Sci. USA 100, 12462–12467 (2003).
pubmed: 14517353
pmcid: 218780
doi: 10.1073/pnas.2034101100
Meyer-Luehmann, M. et al. Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer’s disease. Nature 451, 720–724 (2008).
pubmed: 18256671
pmcid: 3264491
doi: 10.1038/nature06616
Hu, S., Yan, P., Maslov, K., Lee, J.-M. & Wang, L. V. Optical-resolution photoacoustic microscopy of amyloid-beta deposits in vivo. Proc. SPIE 7564, 75643D (2010).
doi: 10.1117/12.843919
Calvo-Rodriguez, M. et al. In vivo detection of tau fibrils and amyloid beta aggregates with luminescent conjugated oligothiophenes and multiphoton microscopy. Acta Neuropathol. Commun. 7, 171 (2019).
pubmed: 31703739
pmcid: 6839235
doi: 10.1186/s40478-019-0832-1
Hefendehl, J. K. et al. Long-term in vivo imaging of beta-amyloid plaque appearance and growth in a mouse model of cerebral beta-amyloidosis. J. Neurosci. 31, 624–629 (2011).
pubmed: 21228171
pmcid: 6623424
doi: 10.1523/JNEUROSCI.5147-10.2011
Wilcock, D. M. et al. Intracranially administered anti-Abeta antibodies reduce beta-amyloid deposition by mechanisms both independent of and associated with microglial activation. J. Neurosci. 23, 3745–3751 (2003).
pubmed: 12736345
pmcid: 6742181
doi: 10.1523/JNEUROSCI.23-09-03745.2003
Sevigny, J. et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 537, 50–56 (2016).
pubmed: 27582220
doi: 10.1038/nature19323
Chen, Z. et al. High-speed large-field multifocal illumination fluorescence microscopy. Laser Photon. Rev. 14, 1900070 (2019).
doi: 10.1002/lpor.201900070
Ni, R. et al. Detection of cerebral tauopathy in P301L mice using high-resolution large-field multifocal illumination fluorescence microscopy. Biomed. Opt. Express 11, 4989–5002 (2020).
pubmed: 33014595
pmcid: 7510859
doi: 10.1364/BOE.395803
Lassailly, F., Foster, K., Lopez-Onieva, L., Currie, E. & Bonnet, D. Multimodal imaging reveals structural and functional heterogeneity in different bone marrow compartments: functional implications on hematopoietic stem cells. Blood 122, 1730–1740 (2013).
pubmed: 23814020
doi: 10.1182/blood-2012-11-467498
Mazo, I. B. et al. Hematopoietic progenitor cell rolling in bone marrow microvessels: parallel contributions by endothelial selectins and vascular cell adhesion molecule 1. J. Exp. Med. 188, 465–474 (1998).
pubmed: 9687524
pmcid: 2212463
doi: 10.1084/jem.188.3.465
Deán-Ben, X. L. & Razansky, D. Adding fifth dimension to optoacoustic imaging: volumetric time-resolved spectrally enriched tomography. Light Sci. Appl. 3, e137 (2014).
doi: 10.1038/lsa.2014.18
Deán-Ben, X. L. et al. Functional optoacoustic neuro-tomography for scalable whole-brain monitoring of calcium indicators. Light Sci. Appl. 5, e16201 (2016).
pubmed: 30167137
pmcid: 6059886
doi: 10.1038/lsa.2016.201
Razansky, D. et al. Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo. Nat. Photonics 3, 412 (2009).
doi: 10.1038/nphoton.2009.98
Omar, M., Aguirre, J. & Ntziachristos, V. Optoacoustic mesoscopy for biomedicine. Nat. Biomed. Eng. 3, 354–370 (2019).
pubmed: 30988470
doi: 10.1038/s41551-019-0377-4
Razansky, D., Klohs, J. & Ni, R. Multi-scale optoacoustic molecular imaging of brain diseases. Eur. J. Nucl. Med. Mol. Imaging 48, 4152–4170 (2021).
pubmed: 33594473
pmcid: 8566397
doi: 10.1007/s00259-021-05207-4
Burmann, B. M. et al. Regulation of alpha-synuclein by chaperones in mammalian cells. Nature 577, 127–132 (2020).
pubmed: 31802003
doi: 10.1038/s41586-019-1808-9
Wang, L. V. & Hu, S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335, 1458–1462 (2012).
pubmed: 22442475
pmcid: 3322413
doi: 10.1126/science.1216210
Taruttis, A. & Ntziachristos, V. Advances in real-time multispectral optoacoustic imaging and its applications. Nat. Photonics 9, 219–227 (2015).
doi: 10.1038/nphoton.2015.29
Chen, Z., Dean-Ben, X. L., Gottschalk, S. & Razansky, D. Hybrid system for in vivo epifluorescence and 4D optoacoustic imaging. Opt. Lett. 42, 4577–4580 (2017).
pubmed: 29140316
doi: 10.1364/OL.42.004577
Jährling, N. et al. Cerebral β-amyloidosis in mice investigated by ultramicroscopy. PLoS ONE 10, e0125418 (2015).
pubmed: 26017149
pmcid: 4446269
doi: 10.1371/journal.pone.0125418
Klohs, J. et al. Longitudinal assessment of amyloid pathology in transgenic ArcAβ mice using multi-parametric magnetic resonance imaging. PLoS ONE 8, e66097 (2013).
pubmed: 23840405
pmcid: 3686820
doi: 10.1371/journal.pone.0066097
Knobloch, M., Konietzko, U., Krebs, D. C. & Nitsch, R. M. Intracellular Abeta and cognitive deficits precede beta-amyloid deposition in transgenic arcAbeta mice. Neurobiol. Aging 28, 1297–1306 (2007).
pubmed: 16876915
doi: 10.1016/j.neurobiolaging.2006.06.019
Merlini, M., Meyer, E. P., Ulmann-Schuler, A. & Nitsch, R. M. Vascular beta-amyloid and early astrocyte alterations impair cerebrovascular function and cerebral metabolism in transgenic arcAbeta mice. Acta Neuropathol. 122, 293–311 (2011).
pubmed: 21688176
pmcid: 3168476
doi: 10.1007/s00401-011-0834-y
Radde, R. et al. Abeta42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep. 7, 940–946 (2006).
pubmed: 16906128
pmcid: 1559665
doi: 10.1038/sj.embor.7400784
Voigt, F. F. et al. The mesoSPIM initiative: open-source light-sheet microscopes for imaging cleared tissue. Nat. Methods 16, 1105–1108 (2019).
pubmed: 31527839
pmcid: 6824906
doi: 10.1038/s41592-019-0554-0
Kayed, R. et al. Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. Mol. Neurodegener. 2, 18 (2007).
pubmed: 17897471
pmcid: 2100048
doi: 10.1186/1750-1326-2-18
Shirani, H. et al. A palette of fluorescent thiophene-based ligands for the identification of protein aggregates. Chemistry 21, 15133–15137 (2015).
pubmed: 26388448
pmcid: 4641461
doi: 10.1002/chem.201502999
Tzoumas, S., Deliolanis, N., Morscher, S. & Ntziachristos, V. Unmixing molecular agents from absorbing tissue in multispectral optoacoustic tomography. IEEE Trans. Med. Imaging 33, 48–60 (2014).
pubmed: 24001986
doi: 10.1109/TMI.2013.2279994
Cox, B., Laufer, J. G., Arridge, S. R. & Beard, P. C. Quantitative spectroscopic photoacoustic imaging: a review. J. Biomed. Opt. 17, 061202 (2012).
pubmed: 22734732
doi: 10.1117/1.JBO.17.6.061202
Lord, A. et al. Observations in APP bitransgenic mice suggest that diffuse and compact plaques form via independent processes in Alzheimer’s disease. Am. J. Pathol. 178, 2286–2298 (2011).
pubmed: 21514441
pmcid: 3081149
doi: 10.1016/j.ajpath.2011.01.052
Rasmussen, J. et al. Amyloid polymorphisms constitute distinct clouds of conformational variants in different etiological subtypes of Alzheimer’s disease. Proc. Natl Acad. Sci. USA 114, 13018–13023 (2017).
pubmed: 29158413
pmcid: 5724274
doi: 10.1073/pnas.1713215114
Ni, R. et al. Amyloid tracers binding sites in autosomal dominant and sporadic Alzheimer’s disease. Alzheimers Dement. 13, 419–430 (2017).
pubmed: 27693181
doi: 10.1016/j.jalz.2016.08.006
Ni, R., Gillberg, P. G., Bergfors, A., Marutle, A. & Nordberg, A. Amyloid tracers detect multiple binding sites in Alzheimer’s disease brain tissue. Brain 136, 2217–2227 (2013).
pubmed: 23757761
doi: 10.1093/brain/awt142
Herrmann, U. S. et al. Structure-based drug design identifies polythiophenes as antiprion compounds. Sci. Transl. Med. 7, 299ra123 (2015).
pubmed: 26246168
doi: 10.1126/scitranslmed.aab1923
Schütz, A. K. et al. The amyloid-Congo red interface at atomic resolution. Angew. Chem. Int. Ed. Engl. 50, 5956–5960 (2011).
pubmed: 21591034
doi: 10.1002/anie.201008276
Schütz, A. K. et al. Binding of polythiophenes to amyloids: structural mapping of the pharmacophore. ACS Chem. Neurosci. 9, 475–481 (2018).
pubmed: 29178774
doi: 10.1021/acschemneuro.7b00397
Bäck, M., Appelqvist, H., LeVine, H. 3rd & Nilsson, K. P. Anionic oligothiophenes compete for binding of X-34 but not PIB to recombinant Aβ amyloid fibrils and Alzheimer’s disease brain-derived Aβ. Chemistry 22, 18335–18338 (2016).
pubmed: 27767229
pmcid: 5215536
doi: 10.1002/chem.201604583
Aslund, A. et al. Novel pentameric thiophene derivatives for in vitro and in vivo optical imaging of a plethora of protein aggregates in cerebral amyloidoses. ACS Chem. Biol. 4, 673–684 (2009).
pubmed: 19624097
pmcid: 2886514
doi: 10.1021/cb900112v
Nyström, S. et al. Evidence for age-dependent in vivo conformational rearrangement within Aβ amyloid deposits. ACS Chem. Biol. 8, 1128–1133 (2013).
pubmed: 23521783
doi: 10.1021/cb4000376
Ulrich, J. D. et al. ApoE facilitates the microglial response to amyloid plaque pathology. J. Exp. Med. 215, 1047–1058 (2018).
pubmed: 29483128
pmcid: 5881464
doi: 10.1084/jem.20171265
Liu, Y. et al. Highly specific noninvasive photoacoustic and positron emission tomography of brain plaque with functionalized croconium dye labeled by a radiotracer. Chem. Sci. 8, 2710–2716 (2017).
pubmed: 28451353
pmcid: 5399633
doi: 10.1039/C6SC04798J
Miao, J. et al. Cerebral microvascular amyloid beta protein deposition induces vascular degeneration and neuroinflammation in transgenic mice expressing human vasculotropic mutant amyloid beta precursor protein. Am. J. Pathol. 167, 505–515 (2005).
pubmed: 16049335
pmcid: 1603574
doi: 10.1016/S0002-9440(10)62993-8
Fischer, V. W., Siddiqi, A. & Yusufaly, Y. Altered angioarchitecture in selected areas of brains with Alzheimer’s disease. Acta Neuropathol. 79, 672–679 (1990).
pubmed: 2360411
doi: 10.1007/BF00294246
Kulic, L. et al. Early accumulation of intracellular fibrillar oligomers and late congophilic amyloid angiopathy in mice expressing the Osaka intra-Aβ APP mutation. Transl. Psychiatry 2, e183 (2012).
pubmed: 23149447
pmcid: 3565767
doi: 10.1038/tp.2012.109
Kim, H. Y. et al. EPPS rescues hippocampus-dependent cognitive deficits in APP/PS1 mice by disaggregation of amyloid-β oligomers and plaques. Nat. Commun. 6, 8997 (2015).
pubmed: 26646366
doi: 10.1038/ncomms9997
Ni, R. et al. In vitro characterization of the regional binding distribution of amyloid PET tracer florbetaben and the glia tracers Deprenyl and PK1195 in autopsy Alzheimer’s brain tissue. J. Alzheimers Dis. 80, 1723–1737 (2021).
pubmed: 33749648
pmcid: 8150513
doi: 10.3233/JAD-201344
Kim, H. M. & Cho, B. R. Small-molecule two-photon probes for bioimaging applications. Chem. Rev. 115, 5014–5055 (2015).
pubmed: 25938620
doi: 10.1021/cr5004425
Snellman, A. et al. Applicability of [(11)C]PIB micro-PET imaging for in vivo follow-up of anti-amyloid treatment effects in APP23 mouse model. Neurobiol. Aging 57, 84–94 (2017).
pubmed: 28605642
doi: 10.1016/j.neurobiolaging.2017.05.008
Zhou, Q., Chen, Z., Robin, J., Deán-Ben, X.-L. & Razansky, D. Diffuse optical localization imaging for noninvasive deep brain microangiography in the NIR-II window. Optica 8, 796–803 (2021).
doi: 10.1364/OPTICA.420378
Ren, W. et al. Automated registration of magnetic resonance imaging and optoacoustic tomography data for experimental studies. Neurophotonics 6, 025001 (2019).
pubmed: 30989087
pmcid: 6446211
doi: 10.1117/1.NPh.6.2.025001
Gottschalk, S. et al. Rapid volumetric optoacoustic imaging of neural dynamics across the mouse brain. Nat. Biomed. Eng 3, 392–401 (2019).
pubmed: 30992553
pmcid: 6825512
doi: 10.1038/s41551-019-0372-9
Gottschalk, S., Fehm, T. F., Dean-Ben, X. L., Tsytsarev, V. & Razansky, D. Correlation between volumetric oxygenation responses and electrophysiology identifies deep thalamocortical activity during epileptic seizures. Neurophotonics 4, 011007 (2017).
pubmed: 27725948
doi: 10.1117/1.NPh.4.1.011007
Dean-Ben, X. L. & Razansky, D. On the link between the speckle free nature of optoacoustics and visibility of structures in limited-view tomography. Photoacoustics 4, 133–140 (2016).
pubmed: 28066714
pmcid: 5200938
doi: 10.1016/j.pacs.2016.10.001
Davoudi, N., Deán-Ben, X. L. & Razansky, D. Deep learning optoacoustic tomography with sparse data. Nat. Mach. Intell. 1, 453–460 (2019).
doi: 10.1038/s42256-019-0095-3
Blinder, P., Shih, A. Y., Rafie, C. & Kleinfeld, D. Topological basis for the robust distribution of blood to rodent neocortex. Proc. Natl Acad. Sci. USA 107, 12670 (2010).
pubmed: 20616030
pmcid: 2906564
doi: 10.1073/pnas.1007239107
Laufer, J., Zhang, E., Raivich, G. & Beard, P. Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner. Appl. Opt. 48, D299–D306 (2009).
pubmed: 19340121
doi: 10.1364/AO.48.00D299
Ren, W. et al. Development of concurrent magnetic resonance imaging and volumetric optoacoustic tomography: a phantom feasibility study. J. Biophotonics 14, e202000293 (2021).
pubmed: 33169918
doi: 10.1002/jbio.202000293
Cohen, S. I. A. et al. A molecular chaperone breaks the catalytic cycle that generates toxic Aβ oligomers. Nat. Struct. Mol. Biol. 22, 207–213 (2015).
pubmed: 25686087
pmcid: 4595974
doi: 10.1038/nsmb.2971
Ni, R. et al. fMRI reveals mitigation of cerebrovascular dysfunction by bradykinin receptors 1 and 2 inhibitor noscapine in a mouse model of cerebral amyloidosis. Front. Aging Neurosci. 11, 27 (2019).
pubmed: 30890928
pmcid: 6413713
doi: 10.3389/fnagi.2019.00027
Klohs, J. et al. Quantitative assessment of microvasculopathy in arcAβ mice with USPIO-enhanced gradient echo MRI. J. Cereb. Blood Flow Metab. 36, 1614–1624 (2016).
pubmed: 26661253
doi: 10.1177/0271678X15621500
Ni, R., Rudin, M. & Klohs, J. Cortical hypoperfusion and reduced cerebral metabolic rate of oxygen in the arcAbeta mouse model of Alzheimer’s disease. Photoacoustics 10, 38–47 (2018).
pubmed: 29682448
pmcid: 5909030
doi: 10.1016/j.pacs.2018.04.001
Chen, Z., Zhou, Q., Rebling, J. & Razansky, D. Cortex-wide microcirculation mapping with ultrafast large-field multifocal illumination microscopy. J. Biophotonics 13, e202000198 (2020).
pubmed: 32761746
Gregor, I. & Enderlein, J. Image scanning microscopy. Curr. Opin. Chem. Biol. 51, 74–83 (2019).
pubmed: 31203139
doi: 10.1016/j.cbpa.2019.05.011
Dean-Ben, X. L., Robin, J., Ni, R. & Razansky, D. Noninvasive three-dimensional optoacoustic localization microangiography of deep tissues. Preprint at https://arxiv.org/abs/2007.00372 (2020).
Ni, R. et al. In-vitro and in-vivo characterization of CRANAD-2 for multi-spectral optoacoustic tomography and fluorescence imaging of amyloid-beta deposits in Alzheimer mice. Photoacoustics 23, 100285 (2021).
pubmed: 34354924
pmcid: 8321919
doi: 10.1016/j.pacs.2021.100285
American National Standard for the Safe Use of Lasers (American National Standards Institute, 1993).
Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).
pubmed: 17151600
doi: 10.1038/nature05453
Ma, Y. et al. A three-dimensional digital atlas database of the adult C57BL/6J mouse brain by magnetic resonance microscopy. Neuroscience 135, 1203–1215 (2005).
pubmed: 16165303
doi: 10.1016/j.neuroscience.2005.07.014
Vagenknecht, P. et al. Non-invasive imaging of tau-targeted probe uptake by whole brain multi-spectral optoacoustic tomography. Eur. J. Nucl. Med. Mol. Imaging 49, 2137–2152 (2022).
pubmed: 35128565
pmcid: 9165274
doi: 10.1007/s00259-022-05708-w
Chung, K. et al. Structural and molecular interrogation of intact biological systems. Nature 497, 332–337 (2013).
pubmed: 23575631
pmcid: 4092167
doi: 10.1038/nature12107
Yang, B. et al. Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell 158, 945–958 (2014).
pubmed: 25088144
pmcid: 4153367
doi: 10.1016/j.cell.2014.07.017