Multiscale optical and optoacoustic imaging of amyloid-β deposits in mice.


Journal

Nature biomedical engineering
ISSN: 2157-846X
Titre abrégé: Nat Biomed Eng
Pays: England
ID NLM: 101696896

Informations de publication

Date de publication:
09 2022
Historique:
received: 30 03 2020
accepted: 27 05 2022
pubmed: 15 7 2022
medline: 24 9 2022
entrez: 14 7 2022
Statut: ppublish

Résumé

Deposits of amyloid-β (Aβ) in the brains of rodents can be analysed by invasive intravital microscopy on a submillimetre scale, or via whole-brain images from modalities lacking the resolution or molecular specificity to accurately characterize Aβ pathologies. Here we show that large-field multifocal illumination fluorescence microscopy and panoramic volumetric multispectral optoacoustic tomography can be combined to longitudinally assess Aβ deposits in transgenic mouse models of Alzheimer's disease. We used fluorescent Aβ-targeted probes (the luminescent conjugated oligothiophene HS-169 and the oxazine-derivative AOI987) to transcranially detect Aβ deposits in the cortex of APP/PS1 and arcAβ mice with single-plaque resolution (8 μm) and across the whole brain (including the hippocampus and the thalamus, which are inaccessible by conventional intravital microscopy) at sub-150 μm resolutions. Two-photon microscopy, light-sheet microscopy and immunohistochemistry of brain-tissue sections confirmed the specificity and regional distributions of the deposits. High-resolution multiscale optical and optoacoustic imaging of Aβ deposits across the entire brain in rodents thus facilitates the in vivo study of Aβ accumulation by brain region and by animal age and strain.

Identifiants

pubmed: 35835994
doi: 10.1038/s41551-022-00906-1
pii: 10.1038/s41551-022-00906-1
doi:

Substances chimiques

Amyloid beta-Peptides 0
Oxazines 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

1031-1044

Subventions

Organisme : NINDS NIH HHS
ID : UF1 NS107680
Pays : United States

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Selkoe, D. J. & Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 8, 595–608 (2016).
pubmed: 27025652 pmcid: 4888851 doi: 10.15252/emmm.201606210
Clark, C. M. et al. Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA 305, 275–283 (2011).
pubmed: 21245183 pmcid: 7041965 doi: 10.1001/jama.2010.2008
Curtis, C. et al. Phase 3 trial of flutemetamol labeled with radioactive fluorine 18 imaging and neuritic plaque density. JAMA Neurol. 72, 287–294 (2015).
pubmed: 25622185 doi: 10.1001/jamaneurol.2014.4144
Klunk, W. E. et al. Binding of the positron emission tomography tracer Pittsburgh compound-B reflects the amount of amyloid-beta in Alzheimer’s disease brain but not in transgenic mouse brain. J. Neurosci. 25, 10598–10606 (2005).
pubmed: 16291932 pmcid: 6725842 doi: 10.1523/JNEUROSCI.2990-05.2005
Sabri, O. et al. Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer’s disease: phase 3 study. Alzheimers Dement. 11, 964–974 (2015).
pubmed: 25824567 doi: 10.1016/j.jalz.2015.02.004
Jack, C. R. Jr. et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 14, 535–562 (2018).
pubmed: 29653606 pmcid: 5958625 doi: 10.1016/j.jalz.2018.02.018
Villemagne, V. L., Dore, V., Burnham, S. C., Masters, C. L. & Rowe, C. C. Imaging tau and amyloid-beta proteinopathies in Alzheimer disease and other conditions. Nat. Rev. Neurol. 14, 225–236 (2018).
pubmed: 29449700 doi: 10.1038/nrneurol.2018.9
Jack, C. R. Jr. et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 9, 119–128 (2010).
pubmed: 20083042 pmcid: 2819840 doi: 10.1016/S1474-4422(09)70299-6
Dhenain, M. et al. Characterization of in vivo MRI detectable thalamic amyloid plaques from APP/PS1 mice. Neurobiol. Aging 30, 41–53 (2009).
pubmed: 17588710 doi: 10.1016/j.neurobiolaging.2007.05.018
Higuchi, M. et al. 19F and 1H MRI detection of amyloid beta plaques in vivo. Nat. Neurosci. 8, 527–533 (2005).
pubmed: 15768036 doi: 10.1038/nn1422
Jack, C. R. Jr. et al. In vivo magnetic resonance microimaging of individual amyloid plaques in Alzheimer’s transgenic mice. J. Neurosci. 25, 10041–10048 (2005).
pubmed: 16251453 pmcid: 2744887 doi: 10.1523/JNEUROSCI.2588-05.2005
Gong, N.-J., Dibb, R., Bulk, M., van der Weerd, L. & Liu, C. Imaging beta amyloid aggregation and iron accumulation in Alzheimer’s disease using quantitative susceptibility mapping MRI. NeuroImage 191, 176–185 (2019).
pubmed: 30739060 doi: 10.1016/j.neuroimage.2019.02.019
Dudeffant, C. et al. Contrast-enhanced MR microscopy of amyloid plaques in five mouse models of amyloidosis and in human Alzheimer’s disease brains. Sci. Rep. 7, 4955 (2017).
pubmed: 28694463 pmcid: 5504006 doi: 10.1038/s41598-017-05285-1
Sehlin, D. et al. Antibody-based PET imaging of amyloid beta in mouse models of Alzheimer’s disease. Nat. Commun. 7, 10759 (2016).
pubmed: 26892305 pmcid: 4762893 doi: 10.1038/ncomms10759
Rodriguez-Vieitez, E. et al. Astrocytosis precedes amyloid plaque deposition in Alzheimer APPswe transgenic mouse brain: a correlative positron emission tomography and in vitro imaging study. Eur. J. Nucl. Med. Mol. Imaging 42, 1119–1132 (2015).
pubmed: 25893384 pmcid: 4424277 doi: 10.1007/s00259-015-3047-0
Sacher, C. et al. Longitudinal PET monitoring of amyloidosis and microglial activation in a second-generation amyloid-β mouse model. J. Nucl. Med. 60, 1787–1793 (2019).
pubmed: 31302633 pmcid: 6894380 doi: 10.2967/jnumed.119.227322
Sacher, C. et al. Asymmetry of fibrillar plaque burden in amyloid mouse models. J. Nucl. Med. 61, 1825–1831 (2020).
pubmed: 32414948 doi: 10.2967/jnumed.120.242750
Snellman, A. et al. Applicability of [11C]PIB micro-PET imaging for in vivo follow-up of anti-amyloid treatment effects in APP23 mouse model. Neurobiol. Aging 57, 84–94 (2017).
pubmed: 28605642 doi: 10.1016/j.neurobiolaging.2017.05.008
Mannheim, J. G. et al. PET/MRI hybrid systems. Semin. Nucl. Med. 48, 332–347 (2018).
pubmed: 29852943 doi: 10.1053/j.semnuclmed.2018.02.011
Hintersteiner, M. et al. In vivo detection of amyloid-beta deposits by near-infrared imaging using an oxazine-derivative probe. Nat. Biotechnol. 23, 577–583 (2005).
pubmed: 15834405 doi: 10.1038/nbt1085
Hyde, D. et al. Hybrid FMT-CT imaging of amyloid-beta plaques in a murine Alzheimer’s disease model. NeuroImage 44, 1304–1311 (2009).
pubmed: 19041402 doi: 10.1016/j.neuroimage.2008.10.038
Zhang, X. et al. Near-infrared fluorescence molecular imaging of amyloid beta species and monitoring therapy in animal models of Alzheimer’s disease. Proc. Natl Acad. Sci. USA 112, 9734–9739 (2015).
pubmed: 26199414 pmcid: 4534214 doi: 10.1073/pnas.1505420112
Whitesell, J. D. et al. Whole brain imaging reveals distinct spatial patterns of amyloid beta deposition in three mouse models of Alzheimer’s disease. J. Comp. Neurol. 527, 2122–2145 (2019).
pubmed: 30311654 doi: 10.1002/cne.24555
Bacskai, B. J. et al. Four-dimensional multiphoton imaging of brain entry, amyloid binding, and clearance of an amyloid-β ligand in transgenic mice. Proc. Natl Acad. Sci. USA 100, 12462–12467 (2003).
pubmed: 14517353 pmcid: 218780 doi: 10.1073/pnas.2034101100
Meyer-Luehmann, M. et al. Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer’s disease. Nature 451, 720–724 (2008).
pubmed: 18256671 pmcid: 3264491 doi: 10.1038/nature06616
Hu, S., Yan, P., Maslov, K., Lee, J.-M. & Wang, L. V. Optical-resolution photoacoustic microscopy of amyloid-beta deposits in vivo. Proc. SPIE 7564, 75643D (2010).
doi: 10.1117/12.843919
Calvo-Rodriguez, M. et al. In vivo detection of tau fibrils and amyloid beta aggregates with luminescent conjugated oligothiophenes and multiphoton microscopy. Acta Neuropathol. Commun. 7, 171 (2019).
pubmed: 31703739 pmcid: 6839235 doi: 10.1186/s40478-019-0832-1
Hefendehl, J. K. et al. Long-term in vivo imaging of beta-amyloid plaque appearance and growth in a mouse model of cerebral beta-amyloidosis. J. Neurosci. 31, 624–629 (2011).
pubmed: 21228171 pmcid: 6623424 doi: 10.1523/JNEUROSCI.5147-10.2011
Wilcock, D. M. et al. Intracranially administered anti-Abeta antibodies reduce beta-amyloid deposition by mechanisms both independent of and associated with microglial activation. J. Neurosci. 23, 3745–3751 (2003).
pubmed: 12736345 pmcid: 6742181 doi: 10.1523/JNEUROSCI.23-09-03745.2003
Sevigny, J. et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 537, 50–56 (2016).
pubmed: 27582220 doi: 10.1038/nature19323
Chen, Z. et al. High-speed large-field multifocal illumination fluorescence microscopy. Laser Photon. Rev. 14, 1900070 (2019).
doi: 10.1002/lpor.201900070
Ni, R. et al. Detection of cerebral tauopathy in P301L mice using high-resolution large-field multifocal illumination fluorescence microscopy. Biomed. Opt. Express 11, 4989–5002 (2020).
pubmed: 33014595 pmcid: 7510859 doi: 10.1364/BOE.395803
Lassailly, F., Foster, K., Lopez-Onieva, L., Currie, E. & Bonnet, D. Multimodal imaging reveals structural and functional heterogeneity in different bone marrow compartments: functional implications on hematopoietic stem cells. Blood 122, 1730–1740 (2013).
pubmed: 23814020 doi: 10.1182/blood-2012-11-467498
Mazo, I. B. et al. Hematopoietic progenitor cell rolling in bone marrow microvessels: parallel contributions by endothelial selectins and vascular cell adhesion molecule 1. J. Exp. Med. 188, 465–474 (1998).
pubmed: 9687524 pmcid: 2212463 doi: 10.1084/jem.188.3.465
Deán-Ben, X. L. & Razansky, D. Adding fifth dimension to optoacoustic imaging: volumetric time-resolved spectrally enriched tomography. Light Sci. Appl. 3, e137 (2014).
doi: 10.1038/lsa.2014.18
Deán-Ben, X. L. et al. Functional optoacoustic neuro-tomography for scalable whole-brain monitoring of calcium indicators. Light Sci. Appl. 5, e16201 (2016).
pubmed: 30167137 pmcid: 6059886 doi: 10.1038/lsa.2016.201
Razansky, D. et al. Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo. Nat. Photonics 3, 412 (2009).
doi: 10.1038/nphoton.2009.98
Omar, M., Aguirre, J. & Ntziachristos, V. Optoacoustic mesoscopy for biomedicine. Nat. Biomed. Eng. 3, 354–370 (2019).
pubmed: 30988470 doi: 10.1038/s41551-019-0377-4
Razansky, D., Klohs, J. & Ni, R. Multi-scale optoacoustic molecular imaging of brain diseases. Eur. J. Nucl. Med. Mol. Imaging 48, 4152–4170 (2021).
pubmed: 33594473 pmcid: 8566397 doi: 10.1007/s00259-021-05207-4
Burmann, B. M. et al. Regulation of alpha-synuclein by chaperones in mammalian cells. Nature 577, 127–132 (2020).
pubmed: 31802003 doi: 10.1038/s41586-019-1808-9
Wang, L. V. & Hu, S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335, 1458–1462 (2012).
pubmed: 22442475 pmcid: 3322413 doi: 10.1126/science.1216210
Taruttis, A. & Ntziachristos, V. Advances in real-time multispectral optoacoustic imaging and its applications. Nat. Photonics 9, 219–227 (2015).
doi: 10.1038/nphoton.2015.29
Chen, Z., Dean-Ben, X. L., Gottschalk, S. & Razansky, D. Hybrid system for in vivo epifluorescence and 4D optoacoustic imaging. Opt. Lett. 42, 4577–4580 (2017).
pubmed: 29140316 doi: 10.1364/OL.42.004577
Jährling, N. et al. Cerebral β-amyloidosis in mice investigated by ultramicroscopy. PLoS ONE 10, e0125418 (2015).
pubmed: 26017149 pmcid: 4446269 doi: 10.1371/journal.pone.0125418
Klohs, J. et al. Longitudinal assessment of amyloid pathology in transgenic ArcAβ mice using multi-parametric magnetic resonance imaging. PLoS ONE 8, e66097 (2013).
pubmed: 23840405 pmcid: 3686820 doi: 10.1371/journal.pone.0066097
Knobloch, M., Konietzko, U., Krebs, D. C. & Nitsch, R. M. Intracellular Abeta and cognitive deficits precede beta-amyloid deposition in transgenic arcAbeta mice. Neurobiol. Aging 28, 1297–1306 (2007).
pubmed: 16876915 doi: 10.1016/j.neurobiolaging.2006.06.019
Merlini, M., Meyer, E. P., Ulmann-Schuler, A. & Nitsch, R. M. Vascular beta-amyloid and early astrocyte alterations impair cerebrovascular function and cerebral metabolism in transgenic arcAbeta mice. Acta Neuropathol. 122, 293–311 (2011).
pubmed: 21688176 pmcid: 3168476 doi: 10.1007/s00401-011-0834-y
Radde, R. et al. Abeta42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep. 7, 940–946 (2006).
pubmed: 16906128 pmcid: 1559665 doi: 10.1038/sj.embor.7400784
Voigt, F. F. et al. The mesoSPIM initiative: open-source light-sheet microscopes for imaging cleared tissue. Nat. Methods 16, 1105–1108 (2019).
pubmed: 31527839 pmcid: 6824906 doi: 10.1038/s41592-019-0554-0
Kayed, R. et al. Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. Mol. Neurodegener. 2, 18 (2007).
pubmed: 17897471 pmcid: 2100048 doi: 10.1186/1750-1326-2-18
Shirani, H. et al. A palette of fluorescent thiophene-based ligands for the identification of protein aggregates. Chemistry 21, 15133–15137 (2015).
pubmed: 26388448 pmcid: 4641461 doi: 10.1002/chem.201502999
Tzoumas, S., Deliolanis, N., Morscher, S. & Ntziachristos, V. Unmixing molecular agents from absorbing tissue in multispectral optoacoustic tomography. IEEE Trans. Med. Imaging 33, 48–60 (2014).
pubmed: 24001986 doi: 10.1109/TMI.2013.2279994
Cox, B., Laufer, J. G., Arridge, S. R. & Beard, P. C. Quantitative spectroscopic photoacoustic imaging: a review. J. Biomed. Opt. 17, 061202 (2012).
pubmed: 22734732 doi: 10.1117/1.JBO.17.6.061202
Lord, A. et al. Observations in APP bitransgenic mice suggest that diffuse and compact plaques form via independent processes in Alzheimer’s disease. Am. J. Pathol. 178, 2286–2298 (2011).
pubmed: 21514441 pmcid: 3081149 doi: 10.1016/j.ajpath.2011.01.052
Rasmussen, J. et al. Amyloid polymorphisms constitute distinct clouds of conformational variants in different etiological subtypes of Alzheimer’s disease. Proc. Natl Acad. Sci. USA 114, 13018–13023 (2017).
pubmed: 29158413 pmcid: 5724274 doi: 10.1073/pnas.1713215114
Ni, R. et al. Amyloid tracers binding sites in autosomal dominant and sporadic Alzheimer’s disease. Alzheimers Dement. 13, 419–430 (2017).
pubmed: 27693181 doi: 10.1016/j.jalz.2016.08.006
Ni, R., Gillberg, P. G., Bergfors, A., Marutle, A. & Nordberg, A. Amyloid tracers detect multiple binding sites in Alzheimer’s disease brain tissue. Brain 136, 2217–2227 (2013).
pubmed: 23757761 doi: 10.1093/brain/awt142
Herrmann, U. S. et al. Structure-based drug design identifies polythiophenes as antiprion compounds. Sci. Transl. Med. 7, 299ra123 (2015).
pubmed: 26246168 doi: 10.1126/scitranslmed.aab1923
Schütz, A. K. et al. The amyloid-Congo red interface at atomic resolution. Angew. Chem. Int. Ed. Engl. 50, 5956–5960 (2011).
pubmed: 21591034 doi: 10.1002/anie.201008276
Schütz, A. K. et al. Binding of polythiophenes to amyloids: structural mapping of the pharmacophore. ACS Chem. Neurosci. 9, 475–481 (2018).
pubmed: 29178774 doi: 10.1021/acschemneuro.7b00397
Bäck, M., Appelqvist, H., LeVine, H. 3rd & Nilsson, K. P. Anionic oligothiophenes compete for binding of X-34 but not PIB to recombinant Aβ amyloid fibrils and Alzheimer’s disease brain-derived Aβ. Chemistry 22, 18335–18338 (2016).
pubmed: 27767229 pmcid: 5215536 doi: 10.1002/chem.201604583
Aslund, A. et al. Novel pentameric thiophene derivatives for in vitro and in vivo optical imaging of a plethora of protein aggregates in cerebral amyloidoses. ACS Chem. Biol. 4, 673–684 (2009).
pubmed: 19624097 pmcid: 2886514 doi: 10.1021/cb900112v
Nyström, S. et al. Evidence for age-dependent in vivo conformational rearrangement within Aβ amyloid deposits. ACS Chem. Biol. 8, 1128–1133 (2013).
pubmed: 23521783 doi: 10.1021/cb4000376
Ulrich, J. D. et al. ApoE facilitates the microglial response to amyloid plaque pathology. J. Exp. Med. 215, 1047–1058 (2018).
pubmed: 29483128 pmcid: 5881464 doi: 10.1084/jem.20171265
Liu, Y. et al. Highly specific noninvasive photoacoustic and positron emission tomography of brain plaque with functionalized croconium dye labeled by a radiotracer. Chem. Sci. 8, 2710–2716 (2017).
pubmed: 28451353 pmcid: 5399633 doi: 10.1039/C6SC04798J
Miao, J. et al. Cerebral microvascular amyloid beta protein deposition induces vascular degeneration and neuroinflammation in transgenic mice expressing human vasculotropic mutant amyloid beta precursor protein. Am. J. Pathol. 167, 505–515 (2005).
pubmed: 16049335 pmcid: 1603574 doi: 10.1016/S0002-9440(10)62993-8
Fischer, V. W., Siddiqi, A. & Yusufaly, Y. Altered angioarchitecture in selected areas of brains with Alzheimer’s disease. Acta Neuropathol. 79, 672–679 (1990).
pubmed: 2360411 doi: 10.1007/BF00294246
Kulic, L. et al. Early accumulation of intracellular fibrillar oligomers and late congophilic amyloid angiopathy in mice expressing the Osaka intra-Aβ APP mutation. Transl. Psychiatry 2, e183 (2012).
pubmed: 23149447 pmcid: 3565767 doi: 10.1038/tp.2012.109
Kim, H. Y. et al. EPPS rescues hippocampus-dependent cognitive deficits in APP/PS1 mice by disaggregation of amyloid-β oligomers and plaques. Nat. Commun. 6, 8997 (2015).
pubmed: 26646366 doi: 10.1038/ncomms9997
Ni, R. et al. In vitro characterization of the regional binding distribution of amyloid PET tracer florbetaben and the glia tracers Deprenyl and PK1195 in autopsy Alzheimer’s brain tissue. J. Alzheimers Dis. 80, 1723–1737 (2021).
pubmed: 33749648 pmcid: 8150513 doi: 10.3233/JAD-201344
Kim, H. M. & Cho, B. R. Small-molecule two-photon probes for bioimaging applications. Chem. Rev. 115, 5014–5055 (2015).
pubmed: 25938620 doi: 10.1021/cr5004425
Snellman, A. et al. Applicability of [(11)C]PIB micro-PET imaging for in vivo follow-up of anti-amyloid treatment effects in APP23 mouse model. Neurobiol. Aging 57, 84–94 (2017).
pubmed: 28605642 doi: 10.1016/j.neurobiolaging.2017.05.008
Zhou, Q., Chen, Z., Robin, J., Deán-Ben, X.-L. & Razansky, D. Diffuse optical localization imaging for noninvasive deep brain microangiography in the NIR-II window. Optica 8, 796–803 (2021).
doi: 10.1364/OPTICA.420378
Ren, W. et al. Automated registration of magnetic resonance imaging and optoacoustic tomography data for experimental studies. Neurophotonics 6, 025001 (2019).
pubmed: 30989087 pmcid: 6446211 doi: 10.1117/1.NPh.6.2.025001
Gottschalk, S. et al. Rapid volumetric optoacoustic imaging of neural dynamics across the mouse brain. Nat. Biomed. Eng 3, 392–401 (2019).
pubmed: 30992553 pmcid: 6825512 doi: 10.1038/s41551-019-0372-9
Gottschalk, S., Fehm, T. F., Dean-Ben, X. L., Tsytsarev, V. & Razansky, D. Correlation between volumetric oxygenation responses and electrophysiology identifies deep thalamocortical activity during epileptic seizures. Neurophotonics 4, 011007 (2017).
pubmed: 27725948 doi: 10.1117/1.NPh.4.1.011007
Dean-Ben, X. L. & Razansky, D. On the link between the speckle free nature of optoacoustics and visibility of structures in limited-view tomography. Photoacoustics 4, 133–140 (2016).
pubmed: 28066714 pmcid: 5200938 doi: 10.1016/j.pacs.2016.10.001
Davoudi, N., Deán-Ben, X. L. & Razansky, D. Deep learning optoacoustic tomography with sparse data. Nat. Mach. Intell. 1, 453–460 (2019).
doi: 10.1038/s42256-019-0095-3
Blinder, P., Shih, A. Y., Rafie, C. & Kleinfeld, D. Topological basis for the robust distribution of blood to rodent neocortex. Proc. Natl Acad. Sci. USA 107, 12670 (2010).
pubmed: 20616030 pmcid: 2906564 doi: 10.1073/pnas.1007239107
Laufer, J., Zhang, E., Raivich, G. & Beard, P. Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner. Appl. Opt. 48, D299–D306 (2009).
pubmed: 19340121 doi: 10.1364/AO.48.00D299
Ren, W. et al. Development of concurrent magnetic resonance imaging and volumetric optoacoustic tomography: a phantom feasibility study. J. Biophotonics 14, e202000293 (2021).
pubmed: 33169918 doi: 10.1002/jbio.202000293
Cohen, S. I. A. et al. A molecular chaperone breaks the catalytic cycle that generates toxic Aβ oligomers. Nat. Struct. Mol. Biol. 22, 207–213 (2015).
pubmed: 25686087 pmcid: 4595974 doi: 10.1038/nsmb.2971
Ni, R. et al. fMRI reveals mitigation of cerebrovascular dysfunction by bradykinin receptors 1 and 2 inhibitor noscapine in a mouse model of cerebral amyloidosis. Front. Aging Neurosci. 11, 27 (2019).
pubmed: 30890928 pmcid: 6413713 doi: 10.3389/fnagi.2019.00027
Klohs, J. et al. Quantitative assessment of microvasculopathy in arcAβ mice with USPIO-enhanced gradient echo MRI. J. Cereb. Blood Flow Metab. 36, 1614–1624 (2016).
pubmed: 26661253 doi: 10.1177/0271678X15621500
Ni, R., Rudin, M. & Klohs, J. Cortical hypoperfusion and reduced cerebral metabolic rate of oxygen in the arcAbeta mouse model of Alzheimer’s disease. Photoacoustics 10, 38–47 (2018).
pubmed: 29682448 pmcid: 5909030 doi: 10.1016/j.pacs.2018.04.001
Chen, Z., Zhou, Q., Rebling, J. & Razansky, D. Cortex-wide microcirculation mapping with ultrafast large-field multifocal illumination microscopy. J. Biophotonics 13, e202000198 (2020).
pubmed: 32761746
Gregor, I. & Enderlein, J. Image scanning microscopy. Curr. Opin. Chem. Biol. 51, 74–83 (2019).
pubmed: 31203139 doi: 10.1016/j.cbpa.2019.05.011
Dean-Ben, X. L., Robin, J., Ni, R. & Razansky, D. Noninvasive three-dimensional optoacoustic localization microangiography of deep tissues. Preprint at https://arxiv.org/abs/2007.00372 (2020).
Ni, R. et al. In-vitro and in-vivo characterization of CRANAD-2 for multi-spectral optoacoustic tomography and fluorescence imaging of amyloid-beta deposits in Alzheimer mice. Photoacoustics 23, 100285 (2021).
pubmed: 34354924 pmcid: 8321919 doi: 10.1016/j.pacs.2021.100285
American National Standard for the Safe Use of Lasers (American National Standards Institute, 1993).
Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).
pubmed: 17151600 doi: 10.1038/nature05453
Ma, Y. et al. A three-dimensional digital atlas database of the adult C57BL/6J mouse brain by magnetic resonance microscopy. Neuroscience 135, 1203–1215 (2005).
pubmed: 16165303 doi: 10.1016/j.neuroscience.2005.07.014
Vagenknecht, P. et al. Non-invasive imaging of tau-targeted probe uptake by whole brain multi-spectral optoacoustic tomography. Eur. J. Nucl. Med. Mol. Imaging 49, 2137–2152 (2022).
pubmed: 35128565 pmcid: 9165274 doi: 10.1007/s00259-022-05708-w
Chung, K. et al. Structural and molecular interrogation of intact biological systems. Nature 497, 332–337 (2013).
pubmed: 23575631 pmcid: 4092167 doi: 10.1038/nature12107
Yang, B. et al. Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell 158, 945–958 (2014).
pubmed: 25088144 pmcid: 4153367 doi: 10.1016/j.cell.2014.07.017

Auteurs

Ruiqing Ni (R)

Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland.
Zurich Neuroscience Center (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland.
Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.

Zhenyue Chen (Z)

Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland.
Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.

Xosé Luís Deán-Ben (XL)

Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland.
Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.

Fabian F Voigt (FF)

Zurich Neuroscience Center (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland.
Brain Research Institute, University of Zurich, Zurich, Switzerland.

Daniel Kirschenbaum (D)

Institute of Neuropathology, Universitätsspital Zurich, Zurich, Switzerland.

Gloria Shi (G)

Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland.

Alessia Villois (A)

Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.

Quanyu Zhou (Q)

Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland.
Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.

Alessandro Crimi (A)

Institute of Neuropathology, Universitätsspital Zurich, Zurich, Switzerland.

Paolo Arosio (P)

Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.

Roger M Nitsch (RM)

Zurich Neuroscience Center (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland.
Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.

K Peter R Nilsson (KPR)

Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.

Adriano Aguzzi (A)

Zurich Neuroscience Center (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland.
Institute of Neuropathology, Universitätsspital Zurich, Zurich, Switzerland.

Fritjof Helmchen (F)

Zurich Neuroscience Center (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland.
Brain Research Institute, University of Zurich, Zurich, Switzerland.

Jan Klohs (J)

Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland. klohs@biomed.ee.ethz.ch.
Zurich Neuroscience Center (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland. klohs@biomed.ee.ethz.ch.

Daniel Razansky (D)

Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland. daniel.razansky@uzh.ch.
Zurich Neuroscience Center (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland. daniel.razansky@uzh.ch.
Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland. daniel.razansky@uzh.ch.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH