Thiosulfate sulfurtransferase prevents hyperglycemic damage to the zebrafish pronephros in an experimental model for diabetes.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
15 07 2022
15 07 2022
Historique:
received:
28
02
2022
accepted:
08
07
2022
entrez:
15
7
2022
pubmed:
16
7
2022
medline:
20
7
2022
Statut:
epublish
Résumé
Thiosulfate sulfurtransferase (TST, EC 2.8.1.1), also known as Rhodanese, was initially discovered as a cyanide detoxification enzyme. However, it was recently also found to be a genetic predictor of resistance to obesity-related type 2 diabetes. Diabetes type 2 is characterized by progressive loss of adequate β-cell insulin secretion and onset of insulin resistance with increased insulin demand, which contributes to the development of hyperglycemia. Diabetic complications have been replicated in adult hyperglycemic zebrafish, including retinopathy, nephropathy, impaired wound healing, metabolic memory, and sensory axonal degeneration. Pancreatic and duodenal homeobox 1 (Pdx1) is a key component in pancreas development and mature beta cell function and survival. Pdx1 knockdown or knockout in zebrafish induces hyperglycemia and is accompanied by organ alterations similar to clinical diabetic retinopathy and diabetic nephropathy. Here we show that pdx1-knockdown zebrafish embryos and larvae survived after incubation with thiosulfate and no obvious morphological alterations were observed. Importantly, incubation with hTST and thiosulfate rescued the hyperglycemic phenotype in pdx1-knockdown zebrafish pronephros. Activation of the mitochondrial TST pathway might be a promising option for therapeutic intervention in diabetes and its organ complications.
Identifiants
pubmed: 35840638
doi: 10.1038/s41598-022-16320-1
pii: 10.1038/s41598-022-16320-1
pmc: PMC9287301
doi:
Substances chimiques
Thiosulfates
0
Thiosulfate Sulfurtransferase
EC 2.8.1.1
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
12077Informations de copyright
© 2022. The Author(s).
Références
Gioacchini, F. M. et al. Hyperglycemia and diabetes mellitus are related to vestibular organs dysfunction: Truth or suggestion? A literature review. Acta Diabetol. 55, 1201–1207 (2018).
pubmed: 29936650
doi: 10.1007/s00592-018-1183-2
Giri, B. et al. Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: An update on glucose toxicity. Biomed. Pharmacother. 107, 306–328 (2018).
pubmed: 30098549
doi: 10.1016/j.biopha.2018.07.157
Ebeling, P., Koistinen, H. A. & Koivisto, V. A. Insulin-independent glucose transport regulates insulin sensitivity. FEBS Lett. 436, 301–303 (1998).
pubmed: 9801136
doi: 10.1016/S0014-5793(98)01149-1
Zang, L., Maddison, L. A. & Chen, W. Zebrafish as a model for obesity and diabetes. Front. Cell Dev. Biol. 6, 1–13 (2018).
doi: 10.3389/fcell.2018.00091
Elo, B., Villano, C. M., Govorko, D. & White, L. A. Larval zebrafish as a model for glucose metabolism: Expression of phosphoenolpyruvate carboxykinase as a marker for exposure to anti-diabetic compounds. J. Mol. Endocrinol. 38, 433–440 (2007).
pubmed: 17446233
doi: 10.1677/JME-06-0037
Wiggenhauser, L. M. & Kroll, J. Vascular damage in obesity and diabetes: Highlighting links between endothelial dysfunction and metabolic disease in Zebrafish and Man. Curr. Vasc. Pharmacol. 17(5), 476–490. https://doi.org/10.2174/1570161116666181031101413 (2019).
doi: 10.2174/1570161116666181031101413
pubmed: 30378499
Drummond, I. A. et al. Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function. Development 125, 4655–4667 (1998).
pubmed: 9806915
doi: 10.1242/dev.125.23.4655
Connaughton, V. P., Baker, C., Fonde, L., Gerardi, E. & Slack, C. Alternate immersion in an external glucose solution differentially affects blood sugar values in older versus younger zebrafish adults. Zebrafish 13, 87–94 (2016).
pubmed: 26771444
doi: 10.1089/zeb.2015.1155
Heckler, K. & Kroll, J. Zebrafish as a model for the study of microvascular complications of diabetes and their mechanisms. Int. J. Mol. Sci. 18, 1–9 (2017).
doi: 10.3390/ijms18092002
Salehpour, A., Rezaei, M., Khoradmehr, A., Tahamtani, Y. & Tamadon, A. Which hyperglycemic model of zebrafish (Danio rerio) Suites My Type 2 diabetes mellitus research? A scoring system for available methods. Front. Cell Dev. Biol. 9, 652061 (2021).
pubmed: 33791308
pmcid: 8005598
doi: 10.3389/fcell.2021.652061
Hwang, W. Y., Peterson, R. T. & Yeh, J. R. J. Methods for targeted mutagenesis in zebrafish using TALENs. Methods 69, 76–84 (2014).
pubmed: 24747922
pmcid: 4157959
doi: 10.1016/j.ymeth.2014.04.009
Shah, A. N., Davey, C. F., Whitebirch, A. C., Miller, A. C. & Moens, C. B. Rapid reverse genetic screening using CRISPR in zebrafish. Nat. Methods 12, 535–540 (2015).
pubmed: 25867848
pmcid: 4667794
doi: 10.1038/nmeth.3360
Lodd, E. et al. The combination of loss of glyoxalase1 and obesity results in hyperglycemia. JCI Insight 4, (2019).
Middel, C. S., Hammes, H. P. & Kroll, J. Advancing diabetic retinopathy research: Analysis of the neurovascular unit in zebrafish. Cells 10, 1–18 (2021).
doi: 10.3390/cells10061313
Kimmel, R. A. et al. Diabetic pdx1-mutant zebrafish show conserved responses to nutrient overload and anti-glycemic treatment. Sci. Rep. 5, 1–14 (2015).
doi: 10.1038/srep14241
Wiggenhauser, L. M. et al. Activation of retinal angiogenesis in hyperglycemic pdx1-/- zebrafish mutants. Diabetes 69, 1020–1031 (2020).
pubmed: 32139597
doi: 10.2337/db19-0873
Wiggenhauser, L. M. et al. pdx1 knockout leads to a diabetic nephropathy– like phenotype in zebrafish and identifies phosphatidylethanolamine as metabolite promoting early diabetic kidney damage. Diabetes 71, 1073–1080 (2022).
pubmed: 35100334
doi: 10.2337/db21-0645
Ali, Z. et al. Photoreceptor degeneration accompanies vascular changes in a zebrafish model of diabetic retinopathy. Investig. Ophthalmol. Vis. Sci. 61(2), 43–43 (2020).
doi: 10.1167/iovs.61.2.43
Aminlari, M., Malekhusseini, A., Akrami, F. & Ebrahimnejad, H. Cyanide-metabolizing enzyme rhodanese in human tissues: Comparison with domestic animals. Comp. Clin. Path. 16, 47–51 (2007).
doi: 10.1007/s00580-006-0647-x
Chaudhary, M. & Gupta, R. Cyanide detoxifying enzyme: Rhodanese. Curr. Biotechnol. e 1, 327–335 (2012).
doi: 10.2174/2211550111201040327
Chow, S. F. & Horowitz, P. M. Spectral differences between rhodanese catalytic intermediates unrelated to enzyme conformation. J. Biol. Chem. 260, 9593–9597 (1985).
pubmed: 3860502
doi: 10.1016/S0021-9258(17)39277-3
Cipollone, R., Ascenzi, P. & Visca, P. Common themes and variations in the rhodanese superfamily. IUBMB Life 59, 51–59 (2007).
pubmed: 17454295
doi: 10.1080/15216540701206859
Nandi, D. L., Horowitz, P. M. & Westley, J. Rhodanese as a thioredoxin oxidase. Int. J. Biochem. Cell Biol. 32, 465–473 (2000).
pubmed: 10762072
doi: 10.1016/S1357-2725(99)00035-7
Westley, J. Rhodanese. Adv. Enzymol. Relat. Areas Mol. Biol. 39(1129), 327–368 (2006).
Hildebrandt, T. M. & Grieshaber, M. K. Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria. FEBS J. 275, 3352–3361 (2008).
pubmed: 18494801
doi: 10.1111/j.1742-4658.2008.06482.x
Morton, N. M. et al. Genetic identification of thiosulfate sulfurtransferase as an adipocyte-expressed antidiabetic target in mice selected for leanness. Nat. Med. 22, 771–779 (2016).
pubmed: 27270587
pmcid: 5524189
doi: 10.1038/nm.4115
Kruithof, P. D. et al. Unraveling the role of thiosulfate sulfurtransferase in metabolic diseases. Biochim. Biophys. Acta Mol. Basis Dis. 1866, 165716 (2020).
pubmed: 32061776
doi: 10.1016/j.bbadis.2020.165716
Peng, T. et al. Systematic review of sodium thiosulfate in treating calciphylaxis in chronic kidney disease patients. Nephrology 23, 669–675 (2018).
pubmed: 28603903
doi: 10.1111/nep.13081
Nguyen, I. T. N. et al. Sodium thiosulfate improves renal function and oxygenation in L-NNA–induced hypertension in rats. Kidney Int. 98, 366–377 (2020).
pubmed: 32605800
doi: 10.1016/j.kint.2020.02.020
Jiang, J. et al. Hydrogen sulfide-mechanisms of toxicity and development of an antidote. Sci. Rep. 6, 1–10 (2016).
Sen, U. et al. Cardioprotective role of sodium thiosulfate on chronic heart failure by modulating endogenous H2S generation. Pharmacology 82, 201–213 (2008).
pubmed: 18810244
doi: 10.1159/000156486
Nguyen, I. T. N. et al. Cardiac protection by oral sodium thiosulfate in a rat model of L-NNA-induced heart disease. Front. Pharmacol. 12, 1–11 (2021).
doi: 10.3389/fphar.2021.650968
Lainšček, D., Šuštar, U., Carter, R. N., Morton, N. M. & Horvat, S. Tst gene mediates protection against palmitate-induced inflammation in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 527, 1008–1013 (2020).
pubmed: 32444140
doi: 10.1016/j.bbrc.2020.05.014
Yanai, H. & Yoshida, H. Beneficial effects of adiponectin on glucose and lipid metabolism and atherosclerotic progression: Mechanisms and perspectives. Int. J. Mol. Sci. 20, 1–25 (2019).
doi: 10.3390/ijms20051190
Dümmler, A., Lawrence, A. M. & de Marco, A. Simplified screening for the detection of soluble fusion constructs expressed in E. coli using a modular set of vectors. Microb. Cell Fact. 4, 1–10 (2005).
doi: 10.1186/1475-2859-4-34
She, J., Yuan, Z., Wu, Y., Chen, J. & Kroll, J. Targeting erythropoietin protects against proteinuria in type 2 diabetic patients and in zebrafish. Mol. Metab. 8, 189–202 (2018).
pubmed: 29203238
doi: 10.1016/j.molmet.2017.11.006
Jörgens, K. et al. High tissue glucose alters intersomitic blood vessels in zebrafish via methylglyoxal targeting the VEGF receptor signaling cascade. Diabetes 64, 213–225 (2015).
pubmed: 25092676
doi: 10.2337/db14-0352
Drummond, I. Making a zebrafish kidney: A tale of two tubes. Trends Cell Biol. 13, 357–365 (2003).
pubmed: 12837606
doi: 10.1016/S0962-8924(03)00124-7
Wingert, R. A. & Davidson, A. J. The zebrafish pronephros: A model to study nephron segmentation. Kidney Int. 73, 1120–1127 (2008).
pubmed: 18322540
doi: 10.1038/ki.2008.37
Dan Dunn, J., Alvarez, L. A. J., Zhang, X. & Soldati, T. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. Redox Biol. 6, 472–485 (2015).
pubmed: 26432659
pmcid: 4596921
doi: 10.1016/j.redox.2015.09.005
Ray, P. D., Huang, B. W. & Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 24, 981–990 (2012).
pubmed: 22286106
pmcid: 3454471
doi: 10.1016/j.cellsig.2012.01.008
Isom, G. E. & Way, J. L. Effects of oxygen on the antagonism of cyanide intoxication: Cytochrome oxidase, in vitro. Toxicol. Appl. Pharmacol. 74, 57–62 (1984).
pubmed: 6328698
doi: 10.1016/0041-008X(84)90269-2
Ogasawara, Y., Lacourciere, G. & Stadtman, T. C. Formation of a selenium-substituted rhodanese by reaction with selenite and glutathione: Possible role of a protein perselenide in a selenium delivery system. Proc. Natl. Acad. Sci. U. S. A. 98, 9494–9498 (2001).
pubmed: 11493708
pmcid: 55480
doi: 10.1073/pnas.171320998