Dried blood spots in clinical lipidomics: optimization and recent findings.
Disease biomarkers
Dried blood spots
Lipidomics
Mass spectrometry
Journal
Analytical and bioanalytical chemistry
ISSN: 1618-2650
Titre abrégé: Anal Bioanal Chem
Pays: Germany
ID NLM: 101134327
Informations de publication
Date de publication:
Oct 2022
Oct 2022
Historique:
received:
05
04
2022
accepted:
05
07
2022
revised:
15
06
2022
pubmed:
16
7
2022
medline:
21
9
2022
entrez:
15
7
2022
Statut:
ppublish
Résumé
Dried blood spots (DBS) are being considered as an alternative sampling method of blood collection that can be used in combination with lipidomic and other omic analysis. DBS are successfully used in the clinical context to collect samples for newborn screening for the measurement of specific fatty acid derivatives, such as acylcarnitines, and lipids from whole blood for diagnostic purposes. However, DBS are scarcely used for lipidomic analysis and investigations. Lipidomic studies using DBS are starting to emerge as a powerful method for sampling and storage in clinical lipidomic analysis, but the major research work is being done in the pre- and analytical steps and procedures, and few in clinical applications. This review presents a description of the impact factors and variables that can affect DBS lipidomic analysis, such as the type of DBS card, haematocrit, homogeneity of the blood drop, matrix/chromatographic effects, and the chemical and physical properties of the analyte. Additionally, a brief overview of lipidomic studies using DBS to unveil their application in clinical scenarios is also presented, considering the studies of method development and validation and, to a less extent, for clinical diagnosis using clinical lipidomics. DBS combined with lipidomic approaches proved to be as effective as whole blood samples, achieving high levels of sensitivity and specificity during MS and MS/MS analysis, which could be a useful tool for biomarker identification. Lipidomic profiling using MS/MS platforms enables significant insights into physiological changes, which could be useful in precision medicine.
Identifiants
pubmed: 35840669
doi: 10.1007/s00216-022-04221-1
pii: 10.1007/s00216-022-04221-1
doi:
Substances chimiques
Biomarkers
0
Fatty Acids
0
Lipids
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
7085-7101Subventions
Organisme : FCT/MCT
ID : LA/P/0006/2020
Organisme : FCT/MCT
ID : LA/P/0094/2020
Organisme : FCT/MCT
ID : UIDB/50011/2020
Organisme : FCT/MCT
ID : UIDB/50017/2020
Organisme : FCT/MCT
ID : UIDP/50011/2020
Organisme : FCT/MCT
ID : UIDP/50017/2020
Organisme : RNEM, Portuguese Mass Spectrometry Network
ID : LISBOA-01-0145-FEDER-402-022125
Informations de copyright
© 2022. Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Wagner M, Tonoli D, Varesio E, Hopfgartner G. The use of mass spectrometry to analyze dried blood spots. Mass Spectrom Rev. 2016;35:361–438. https://doi.org/10.1002/mas.21441 .
doi: 10.1002/mas.21441
pubmed: 25252132
Rottinghaus EK, Beard RS, Bile E, Modukanele M, Maruping M, Mine M, Nkengasong J, Yang C. Evaluation of dried blood spots collected on filter papers from three manufacturers stored at ambient temperature for application in HIV-1 drug resistance monitoring. PLoS One. 2014;9:e109060. https://doi.org/10.1371/journal.pone.0109060 .
doi: 10.1371/journal.pone.0109060
pubmed: 25303690
pmcid: 4193826
Konig S, Yildiz O, Hermann N, Steurer A, Singrasa M, Dobelin W. A novel concept for sample collection and sample preparation. Int J Pharm Sci Rev Res. 2012;15:90–4.
Rus C-M, Di Bucchianico S, Cozma C, Zimmermann R, Bauer P. Dried blood spot (DBS) methodology study for biomarker discovery in lysosomal storage disease (LSD). Metabolites. 2021;11:382. https://doi.org/10.3390/metabo11060382 .
doi: 10.3390/metabo11060382
pubmed: 34199226
pmcid: 8231917
Li K, Naviaux JC, Monk JM, Wang L, Naviaux RK. Improved dried blood spot-based metabolomics: a targeted, broad-spectrum, single-injection method. Metabolites. 2020;10:82. https://doi.org/10.3390/metabo10030082 .
doi: 10.3390/metabo10030082
pmcid: 7143494
Nakajima D, Ohara O, Kawashima Y. Toward proteome-wide exploration of proteins in dried blood spots using liquid chromatography-coupled mass spectrometry. Proteomics. 2021;21:2100019. https://doi.org/10.1002/pmic.202100019 .
doi: 10.1002/pmic.202100019
Dhingra N, Diepart M, Dziekan G, Khamassi S, Otaiza F, Wilburn S (2010) WHO guidelines on drawing blood: best practices in phlebotomy. World Health Organization, https://www.euro.who.int/__data/assets/pdf_file/0005/268790/WHO-guidelines-on-drawing-blood-best-practices-in-phlebotomy-Eng.pdf . Accessed 14 June 2022
Malsagova K, Kopylov A, Stepanov A, Butkova T, Izotov A, Kaysheva A. Dried blood spot in laboratory: directions and prospects. Diagnostics. 2020;10:248. https://doi.org/10.3390/diagnostics10040248 .
doi: 10.3390/diagnostics10040248
pmcid: 7235996
Lima-Oliveira G, Lippi G, Salvagno GL, Picheth G, Guidi GC. Laboratory Diagnostics and Quality of Blood Collection/Laboratorijska Dijagnostika I Kvalitet Uzimanja Uzoraka Krvi. J Med Biochem. 2015;34:288–94. https://doi.org/10.2478/jomb-2014-0043 .
doi: 10.2478/jomb-2014-0043
pubmed: 28356839
pmcid: 4922344
Lim MD. Dried blood spots for global health diagnostics and surveillance: opportunities and challenges. Am J Trop Med Hyg. 2018;99:256–65. https://doi.org/10.4269/ajtmh.17-0889 .
doi: 10.4269/ajtmh.17-0889
pubmed: 29968557
pmcid: 6090344
Burnett JE. Dried blood spot sampling: practical considerations and recommendation for use with preclinical studies. Bioanalysis. 2011;3:1099–107.
doi: 10.4155/bio.11.68
Lv J, Zhang L, Yan F, Wang X. Clinical lipidomics: a new way to diagnose human diseases. Clin Transl Med. 2018;7:10–2. https://doi.org/10.1186/s40169-018-0190-9 .
doi: 10.1186/s40169-018-0190-9
Gao F, McDaniel J, Chen EY, Rockwell HE, Drolet J, Vishnudas VK, Tolstikov V, Sarangarajan R, Narain NR, Kiebish MA. Dynamic and temporal assessment of human dried blood spot MS/MSALL shotgun lipidomics analysis. Nutr Metab (Lond). 2017;14:28. https://doi.org/10.1186/s12986-017-0182-6 .
doi: 10.1186/s12986-017-0182-6
Wilson I. Global metabolic profiling (metabonomics/metabolomics) using dried blood spots: advantages and pitfalls. Bioanalysis. 2011;3:2255–7. https://doi.org/10.4155/bio.11.221 .
doi: 10.4155/bio.11.221
pubmed: 22011171
Ismaiel OA, Jenkins RG, Thomas Karnes H. Investigation of endogenous blood lipids components that contribute to matrix effects in dried blood spot samples by liquid chromatography-tandem mass spectrometry. Drug Test Anal. 2013;5:710–5. https://doi.org/10.1002/dta.1421 .
doi: 10.1002/dta.1421
pubmed: 23055275
Furse S, Koulman A. Lipid extraction from dried blood spots and dried milk spots for untargeted high throughput lipidomics. Mol Omi. 2020;16:563–72. https://doi.org/10.1039/d0mo00102c .
doi: 10.1039/d0mo00102c
Primassin S, Spiekerkoetter U. ESI-MS/MS measurement of free carnitine and its precursor γ-butyrobetaine in plasma and dried blood spots from patients with organic acidurias and fatty acid oxidation disorders. Mol Genet Metab. 2010;101:141–5. https://doi.org/10.1016/j.ymgme.2010.06.012 .
doi: 10.1016/j.ymgme.2010.06.012
pubmed: 20637671
Al-Thihli K, Sinclair G, Sirrs S, Mezei M, Nelson J, Vallance H. Performance of serum and dried blood spot acylcarnitine profiles for detection of fatty acid β-oxidation disorders in adult patients with rhabdomyolysis. J Inherit Metab Dis. 2014;37:207–13. https://doi.org/10.1007/s10545-012-9578-7 .
doi: 10.1007/s10545-012-9578-7
pubmed: 23296367
Snowden SG, Korosi A, de Rooij SR, Koulman A. Combining lipidomics and machine learning to measure clinical lipids in dried blood spots. Metabolomics. 2020;16:83. https://doi.org/10.1007/s11306-020-01703-0 .
doi: 10.1007/s11306-020-01703-0
pubmed: 32710150
pmcid: 7381462
Di Marino C, De Marco A, Pisanti A, Romanucci V. Effects of dried blood spot storage on lipidomic analysis. Molecules. 2018;23:403. https://doi.org/10.3390/molecules23020403 .
doi: 10.3390/molecules23020403
pmcid: 6017148
Metherel AH, Hogg RC, Buzikievich LM, Stark KD. Butylated hydroxytoluene can protect polyunsaturated fatty acids in dried blood spots from degradation for up to 8 weeks at room temperature. Lipids Health Dis. 2013;12:22. https://doi.org/10.1186/1476-511X-12-22 .
doi: 10.1186/1476-511X-12-22
pubmed: 23425563
pmcid: 3599643
Luginbühl M, Schröck A, König S, Schürch S, Weinmann W. Determination of fatty acid ethyl esters in dried blood spots by LC–MS/MS as markers for ethanol intake: application in a drinking study. Anal Bioanal Chem. 2016;408:3503–9. https://doi.org/10.1007/s00216-016-9426-y .
doi: 10.1007/s00216-016-9426-y
pubmed: 26968564
Liu G, Mühlhäusler BS, Gibson RA. A method for long term stabilisation of long chain polyunsaturated fatty acids in dried blood spots and its clinical application. Prostaglandins, Leukot Essent Fat Acids. 2014;91:251–60. https://doi.org/10.1016/j.plefa.2014.09.009 .
doi: 10.1016/j.plefa.2014.09.009
Koulman A, Prentice P, Wong MCY, Matthews L, Bond NJ, Eiden M, Griffin JL, Dunger DB. The development and validation of a fast and robust dried blood spot based lipid profiling method to study infant metabolism. Metabolomics. 2014;10:1018–25. https://doi.org/10.1007/s11306-014-0628-z .
doi: 10.1007/s11306-014-0628-z
pubmed: 25177234
pmcid: 4145199
Drzymała-Czyż S, Janich S, Klingler M, Demmelmair J, Walkowiak J, Koletzko B. Whole blood glycerophospholipids in dried blood spots — a reliable marker for the fatty acid status. Chem Phys Lipids. 2017;207:1–9. https://doi.org/10.1016/j.chemphyslip.2017.06.003 .
doi: 10.1016/j.chemphyslip.2017.06.003
pubmed: 28669639
Hewawasam E, Liu G, Jeffery DW, Muhlhausler BS, Gibson RA. A validated method for analyzing polyunsaturated free fatty acids from dried blood spots using LC–MS/MS. Prostaglandins, Leukot Essent Fat Acids. 2017;125:1–7. https://doi.org/10.1016/j.plefa.2017.08.010 .
doi: 10.1016/j.plefa.2017.08.010
Liao HW, Lin SW, Lin YT, Lee CH, Kuo CH. Identification of potential sphingomyelin markers for the estimation of hematocrit in dried blood spots via a lipidomic strategy. Anal Chim Acta. 2018;1003:34–41. https://doi.org/10.1016/j.aca.2017.11.041 .
doi: 10.1016/j.aca.2017.11.041
pubmed: 29317027
Aristizabal Henao JJ, Metherel AH, Smith RW, Stark KD. Tailored extraction procedure is required to ensure recovery of the main lipid classes in whole blood when profiling the lipidome of dried blood spots. Anal Chem. 2016;88:9391–6. https://doi.org/10.1021/acs.analchem.6b03030 .
doi: 10.1021/acs.analchem.6b03030
pubmed: 27575696
Gunash J, Aristizabal-Henao JJ, Stark KD. Quantitating fatty acids in dried blood spots on a common collection card versus a novel wicking sampling device. Prostaglandins, Leukot Essent Fat Acids. 2019;145:1–6. https://doi.org/10.1016/j.plefa.2019.05.002 .
doi: 10.1016/j.plefa.2019.05.002
Li W, Zhang J, Tse FLS. Strategies in quantitative LC-MS/MS analysis of unstable small molecules in biological matrices. Biomed Chromatogr. 2011;25:258–77. https://doi.org/10.1002/bmc.1572 .
doi: 10.1002/bmc.1572
pubmed: 21204113
Grüner N, Stambouli O, Ross RS. Dried blood spots—preparing and processing for use in immunoassays and in molecular techniques. J Vis Exp. 2015;13:52619. https://doi.org/10.3791/52619 .
doi: 10.3791/52619
Ho NT, Busik JV, Resau JH, Paneth N, Khoo SK. Effect of storage time on gene expression data acquired from unfrozen archived newborn blood spots. Mol Genet Metab. 2016;119:207–13. https://doi.org/10.1016/j.ymgme.2016.08.001 .
doi: 10.1016/j.ymgme.2016.08.001
pubmed: 27553879
pmcid: 5083152
Pupillo D, Simonato M, Cogo PE, Lapillonne A, Carnielli VP. Short-term stability of whole blood polyunsaturated fatty acid content on filter paper during storage at −28 °C. Lipids. 2016;51:193–8. https://doi.org/10.1007/s11745-015-4111-z .
doi: 10.1007/s11745-015-4111-z
pubmed: 26749585
Han J, Higgins R, Lim MD, Lin K, Yang J, Borchers CH. Short-term stabilities of 21 amino acids in dried blood spots. Clin Chem. 2018;64:400–2. https://doi.org/10.1373/clinchem.2017.278457 .
doi: 10.1373/clinchem.2017.278457
pubmed: 29097508
Chuang WL, Pacheco J, Cooper S, McGovern MM, Cox GF, Keutzer J, Zhang XK. Lyso-sphingomyelin is elevated in dried blood spots of Niemann-Pick B patients. Mol Genet Metab. 2014;111:209–11. https://doi.org/10.1016/j.ymgme.2013.11.012 .
doi: 10.1016/j.ymgme.2013.11.012
pubmed: 24418695
Mashavave G, Kuona P, Tinago W, Stray-Pedersen B, Munjoma M, Musarurwa C. Dried blood spot omega-3 and omega-6 long chain polyunsaturated fatty acid levels in 7–9 year old Zimbabwean children: a cross sectional study. BMC Clin Pathol. 2016;16:14. https://doi.org/10.1186/s12907-016-0035-7 .
doi: 10.1186/s12907-016-0035-7
pubmed: 27499701
pmcid: 4974798
Le Faouder P, Soullier J, Tremblay-Franco M, Tournadre A, Martin J-F, Guitton Y, Carlé C, Caspar-Bauguil S, Denechaud P-D, Bertrand-Michel J. Untargeted lipidomic profiling of dry blood spots using SFC-HRMS. Metabolites. 2021;11:305. https://doi.org/10.3390/metabo11050305 .
doi: 10.3390/metabo11050305
pubmed: 34064856
pmcid: 8151068
Kimura M, Yoon HR, Wasant P, Takahashi Y, Yamaguchi S. A sensitive and simplified method to analyze free fatty acids in children with mitochondrial beta oxidation disorders using gas chromatography/mass spectrometry and dried blood spots. Clin Chim Acta. 2002;316:117–21. https://doi.org/10.1016/S0009-8981(01)00741-0 .
doi: 10.1016/S0009-8981(01)00741-0
pubmed: 11750281
Kyle JE, Casey CP, Stratton KG, Zink EM, Kim Y, Zheng X, Monroe ME, Weitz KK, Bloodsworth KJ, Orton DJ, Ibrahim YM, Moore RJ, Lee CG, Pedersen C, Orwoll E, Smith RD, Burnum-Johnson KE, Baker ES. Comparing identified and statistically significant lipids and polar metabolites in 15-year old serum and dried blood spot samples for longitudinal studies. Rapid Commun Mass Spectrom. 2017;31:447–56. https://doi.org/10.1002/rcm.7808 .
doi: 10.1002/rcm.7808
pubmed: 27958645
pmcid: 5292309
Liu G, Patrone L, Snapp HM, Batog A, Valentine J, Cosma G, Tymiak A, Ji QC, Arnold ME. Evaluating and defining sample preparation procedures for DBS LC–MS/MS assays. Bioanalysis. 2010;2:1405–14. https://doi.org/10.4155/bio.10.106 .
doi: 10.4155/bio.10.106
pubmed: 21083341
Clark GT, Haynes JJ. Utilization of DBS within drug discovery: a simple 2D-LC–MS/MS system to minimize blood- and paper-based matrix effects from FTA elute™ DBS. Bioanalysis. 2011;3:1253–70. https://doi.org/10.4155/bio.11.81 .
doi: 10.4155/bio.11.81
pubmed: 21649501
Ismaiel OA, Zhang T, Jenkins RG, Karnes HT. Investigation of endogenous blood plasma phospholipids, cholesterol and glycerides that contribute to matrix effects in bioanalysis by liquid chromatography/mass spectrometry. J Chromatogr B. 2010;878:3303–16. https://doi.org/10.1016/j.jchromb.2010.10.012 .
doi: 10.1016/j.jchromb.2010.10.012
Gurtovenko AA, Mukhamadiarov EI, Kostritskii AY, Karttunen M. Phospholipid–cellulose interactions: insight from atomistic computer simulations for understanding the impact of cellulose-based materials on plasma membranes. J Phys Chem B. 2018;122:9973–81. https://doi.org/10.1021/acs.jpcb.8b07765 .
doi: 10.1021/acs.jpcb.8b07765
pubmed: 30295483
Kostritskii AY, Tolmachev DA, Lukasheva NV, Gurtovenko AA. Molecular-level insight into the interaction of phospholipid bilayers with cellulose. Langmuir. 2017;33:12793–803. https://doi.org/10.1021/acs.langmuir.7b02297 .
doi: 10.1021/acs.langmuir.7b02297
pubmed: 29040801
Skjærvø Ø, Solbakk EJ, Halvorsen TG, Reubsaet L. Paper-based immunocapture for targeted protein analysis. Talanta. 2019;195:764–70. https://doi.org/10.1016/j.talanta.2018.12.013 .
doi: 10.1016/j.talanta.2018.12.013
pubmed: 30625614
McCann L, Benavidez TE, Holtsclaw S, Garcia CD. Addressing the distribution of proteins spotted on μPADs. Analyst. 2017;142:3899–905. https://doi.org/10.1039/C7AN00849J .
doi: 10.1039/C7AN00849J
pubmed: 28914301
Cobb Z, de Vries R, Spooner N, Williams S, Staelens L, Doig M, Broadhurst R, Barfield M, van de Merbel N, Schmid B, Siethoff C, Ortiz J, Verheij E, van Baar B, White S, Timmerman P. In-depth study of homogeneity in DBS using two different techniques: results from the EBF DBS-microsampling consortium. Bioanalysis. 2013;5:2161–9. https://doi.org/10.4155/bio.13.171 .
doi: 10.4155/bio.13.171
pubmed: 23829465
Stickle DF, Rawlinson NJ, Landmark JD. Increased perimeter red cell concentration in filter paper bloodspot samples is consistent with constant-load size exclusion chromatography occurring during application. Clin Chim Acta. 2009;401:42–5. https://doi.org/10.1016/j.cca.2008.11.011 .
doi: 10.1016/j.cca.2008.11.011
pubmed: 19049802
Kvaskoff D, Ko P, Simila HA, Eyles DW. Distribution of 25-hydroxyvitamin D3 in dried blood spots and implications for its quantitation by tandem mass spectrometry. J Chromatogr B. 2012;901:47–52. https://doi.org/10.1016/j.jchromb.2012.05.040 .
doi: 10.1016/j.jchromb.2012.05.040
Hall E, Flores S, De Jesús V. Influence of hematocrit and total-spot volume on performance characteristics of dried blood spots for newborn screening. Int J Neonatal Screen. 2015;1:69–78. https://doi.org/10.3390/ijns1020069 .
doi: 10.3390/ijns1020069
pubmed: 28868497
De Kesel PM, Sadones N, Capiau S, Lambert WE, Stove CP. Hemato-critical issues in quantitative analysis of dried blood spots: challenges and solutions. Bioanalysis. 2013;5:2023–41. https://doi.org/10.4155/bio.13.156 .
doi: 10.4155/bio.13.156
pubmed: 23937137
Chao TC, Trybala A, Starov V, Das DB. Influence of haematocrit level on the kinetics of blood spreading on thin porous medium during dried blood spot sampling. Colloids Surf A Physicochem Eng Asp. 2014;451:38–47. https://doi.org/10.1016/j.colsurfa.2014.03.033 .
doi: 10.1016/j.colsurfa.2014.03.033
Youhnovski N, Bergeron A, Furtado M, Garofolo F. Pre-cut dried blood spot (PCDBS): an alternative to dried blood spot (DBS) technique to overcome hematocrit impact. Rapid Commun Mass Spectrom. 2011;25:2951–8. https://doi.org/10.1002/rcm.5182 .
doi: 10.1002/rcm.5182
pubmed: 21913274
Li F, Ploch S, Fast D, Michael S. Perforated dried blood spot accurate microsampling: the concept and its applications in toxicokinetic sample collection. J Mass Spectrom. 2012;47:655–67. https://doi.org/10.1002/jms.3015 .
doi: 10.1002/jms.3015
pubmed: 22576879
Ren X, Paehler T, Zimmer M, Guo Z, Zane P, Emmons GT. Impact of various factors on radioactivity distribution in different DBS papers. Bioanalysis. 2010;2:1469–75. https://doi.org/10.4155/bio.10.96 .
doi: 10.4155/bio.10.96
pubmed: 21083347
Trufelli H, Palma P, Famiglini G, Cappiello A. An overview of matrix effects in liquid chromatography–mass spectrometry. Mass Spectrom Rev. 2011;30:491–509. https://doi.org/10.1002/mas.20298 .
doi: 10.1002/mas.20298
pubmed: 21500246
Marsh D. Handbook of lipids bilayers. 2nd ed. Boca Raton, FL, USA: CRC Press; 2013.
doi: 10.1201/b11712
Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–7. https://doi.org/10.1139/o59-099 .
doi: 10.1139/o59-099
pubmed: 13671378
Eggers LF, Schwudke D (2016) Liquid extraction: Folch. Encycl Lipidomics 1–6 https://doi.org/10.1007/978-94-007-7864-1_89-1
Chace DH, Kalas TA, Naylor EW. Use of tandem mass spectrometry for multianalyte screening of dried blood specimens from newborns. Clin Chem. 2003;49:1797–817. https://doi.org/10.1373/clinchem.2003.022178 .
doi: 10.1373/clinchem.2003.022178
pubmed: 14578311
O’Donnell VB, Ekroos K, Liebisch G, Wakelam M. Lipidomics: current state of the art in a fast moving field. WIREs Syst Biol Med. 2020;12:e1466. https://doi.org/10.1002/wsbm.1466 .
doi: 10.1002/wsbm.1466
Züllig T, Trötzmüller M, Köfeler HC. Lipidomics from sample preparation to data analysis: a primer. Anal Bioanal Chem. 2020;412:2191–209. https://doi.org/10.1007/s00216-019-02241-y .
doi: 10.1007/s00216-019-02241-y
pubmed: 31820027
Alves MA, Lamichhane S, Dickens A, McGlinchey A, Ribeiro HC, Sen P, Wei F, Hyötyläinen T, Orešič M. Systems biology approaches to study lipidomes in health and disease. Biochim Biophys Acta - Mol Cell Biol Lipids. 2021;1866:158857. https://doi.org/10.1016/j.bbalip.2020.158857 .
doi: 10.1016/j.bbalip.2020.158857
pubmed: 33278596
Domingues P, García A, Skrzydlewska E (2018) Advanced analytical chemistry for life sciences. AACLifeSci, https://www.umb.edu.pl/photo/pliki/projekty_umb/aac/aaclifesci_-_manual.pdf . Accessed 14 June 2022
Li A, Hines KM, Xu L. Lipidomics by HILIC-ion mobility-mass spectrometry. Methods Mol Biol. 2020;2084:119–32. https://doi.org/10.1007/978-1-0716-0030-6_7 .
doi: 10.1007/978-1-0716-0030-6_7
pubmed: 31729657
pmcid: 7255642
Laboureur L, Ollero M, Touboul D. Lipidomics by supercritical fluid chromatography. Int J Mol Sci. 2015;16:13868–84. https://doi.org/10.3390/ijms160613868 .
doi: 10.3390/ijms160613868
pubmed: 26090714
pmcid: 4490528
de Sain-van der Velden MGM, Diekman EF, Jans JJ, van der Ham M, Prinsen BHCMT, Visser G, Verhoeven-Duif NM (2013) Differences between acylcarnitine profiles in plasma and bloodspots. Mol Genet Metab 110:116–121. https://doi.org/10.1016/j.ymgme.2013.04.008 .
Gordon Bell J, Mackinlay EE, Dick JR, Younger I, Lands B, Gilhooly T. Using a fingertip whole blood sample for rapid fatty acid measurement: method validation and correlation with erythrocyte polar lipid compositions in UK subjects. Br J Nutr. 2011;106:1408–15. https://doi.org/10.1017/S0007114511001978 .
doi: 10.1017/S0007114511001978
pubmed: 21736805
Mohammed BS, Cameron GA, Cameron L, Hawksworth GH, Helms PJ, McLay JS. Can finger-prick sampling replace venous sampling to determine the pharmacokinetic profile of oral paracetamol? Br J Clin Pharmacol. 2010;70:52–6. https://doi.org/10.1111/j.1365-2125.2010.03668.x .
doi: 10.1111/j.1365-2125.2010.03668.x
pubmed: 20642547
pmcid: 2909807