Detailed stratified GWAS analysis for severe COVID-19 in four European populations.
Journal
Human molecular genetics
ISSN: 1460-2083
Titre abrégé: Hum Mol Genet
Pays: England
ID NLM: 9208958
Informations de publication
Date de publication:
28 11 2022
28 11 2022
Historique:
received:
14
01
2022
revised:
11
06
2022
accepted:
26
07
2022
pubmed:
19
7
2022
medline:
1
12
2022
entrez:
18
7
2022
Statut:
ppublish
Résumé
Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ~0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.
Identifiants
pubmed: 35848942
pii: 6644888
doi: 10.1093/hmg/ddac158
pmc: PMC9703941
doi:
Types de publication
Meta-Analysis
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
3945-3966Subventions
Organisme : NIAMS NIH HHS
ID : R01 AR063759
Pays : United States
Informations de copyright
© The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Références
Cell. 2016 Oct 20;167(3):643-656.e17
pubmed: 27768888
Proc Natl Acad Sci U S A. 2019 Jan 15;116(3):944-949
pubmed: 30602460
PLoS Genet. 2021 Aug 26;17(8):e1009723
pubmed: 34437535
Nature. 2021 Jul;595(7865):114-119
pubmed: 33915568
Nat Commun. 2021 Feb 3;12(1):764
pubmed: 33536417
J Clin Invest. 2021 Dec 1;131(23):
pubmed: 34597274
Nature. 2015 Oct 1;526(7571):68-74
pubmed: 26432245
Genet Med. 2021 Nov;23(11):2076-2086
pubmed: 34183789
Pharmacogenet Genomics. 2008 Aug;18(8):733-7
pubmed: 18622266
Bioinformatics. 2016 May 15;32(10):1493-501
pubmed: 26773131
G3 (Bethesda). 2011 Nov;1(6):457-70
pubmed: 22384356
JCI Insight. 2020 Mar 12;5(5):
pubmed: 32069267
Cell Discov. 2021 Aug 31;7(1):76
pubmed: 34465742
N Engl J Med. 2020 Oct 15;383(16):1522-1534
pubmed: 32558485
Cell. 2016 Nov 17;167(5):1145-1149
pubmed: 27863232
Sci Rep. 2020 Nov 13;10(1):19765
pubmed: 33188232
Genome Res. 2020 May;30(5):724-735
pubmed: 32424072
J Clin Virol. 2020 Jun;127:104371
pubmed: 32315817
PLoS Biol. 2010 Sep 28;8(9):
pubmed: 20927412
Trends Ecol Evol. 2018 Jun;33(6):427-440
pubmed: 29731154
Nat Med. 2019 Jul;25(7):1153-1163
pubmed: 31209336
J Exp Med. 2021 Mar 1;218(3):
pubmed: 33433624
Aust N Z J Med. 1984 Oct;14(5 Suppl 3):731-4
pubmed: 6598039
Genome Biol. 2018 Feb 6;19(1):15
pubmed: 29409532
Bioinformatics. 2017 Sep 01;33(17):2776-2778
pubmed: 28475694
Nucleic Acids Res. 2014 Jan;42(Database issue):D1027-32
pubmed: 24253300
Hum Mol Genet. 2021 Apr 27;30(5):356-369
pubmed: 33555323
Science. 2020 Sep 11;369(6509):1318-1330
pubmed: 32913098
EJHaem. 2021 May;2(2):175-187
pubmed: 34124710
Nat Genet. 2018 Sep;50(9):1335-1341
pubmed: 30104761
Nat Genet. 2012 Jul 01;44(8):872-80
pubmed: 22751100
Mol Psychiatry. 2021 Aug;26(8):3778-3794
pubmed: 32051550
Cell. 2016 Nov 17;167(5):1415-1429.e19
pubmed: 27863252
Nature. 2021 Mar;591(7848):92-98
pubmed: 33307546
Nat Commun. 2021 Mar 30;12(1):1964
pubmed: 33785739
Elife. 2020 Jun 08;9:
pubmed: 32510333
Genome Res. 2002 Feb;12(2):339-48
pubmed: 11827954
J Clin Immunol. 2021 Aug;41(6):1154-1161
pubmed: 34050837
Nat Methods. 2017 Oct;14(10):955-958
pubmed: 28846088
Bioinformatics. 2010 Sep 1;26(17):2190-1
pubmed: 20616382
Nat Commun. 2020 Dec 9;11(1):6317
pubmed: 33298944
Nature. 2021 Dec;600(7889):472-477
pubmed: 34237774
Genet Epidemiol. 2014 Feb;38(2):97-103
pubmed: 24408308
Nucleic Acids Res. 2017 Jan 4;45(D1):D896-D901
pubmed: 27899670
Nucleic Acids Res. 2019 Jan 8;47(D1):D766-D773
pubmed: 30357393
Sci Rep. 2020 Nov 10;10(1):19395
pubmed: 33173052
Am J Hum Genet. 2007 Sep;81(3):559-75
pubmed: 17701901
Nat Genet. 2005 Feb;37(2):129-37
pubmed: 15654335
Am J Hum Genet. 2008 Jul;83(1):132-5; author reply 135-9
pubmed: 18606306
PLoS One. 2021 Mar 4;16(3):e0247461
pubmed: 33661992
Hum Mol Genet. 2019 Jun 15;28(12):2078-2092
pubmed: 30590525
Hum Mol Genet. 2009 Jul 15;18(14):2555-66
pubmed: 19383631
Nature. 2021 Jul;595(7865):107-113
pubmed: 33915569
Genome Biol. 2015 Dec 10;16:278
pubmed: 26653891
Nucleic Acids Res. 2020 Jan 8;48(D1):D77-D83
pubmed: 31665515
Nat Genet. 2019 Mar;51(3):494-505
pubmed: 30804561
Eur J Hum Genet. 2016 May;24(5):761-6
pubmed: 26306642
Nature. 2021 Feb;590(7845):290-299
pubmed: 33568819
Viruses. 2012 Nov 19;4(11):3209-26
pubmed: 23202522
Nat Med. 2020 May;26(5):681-687
pubmed: 32327758
EBioMedicine. 2021 Oct;72:103629
pubmed: 34655949
Genomics Proteomics Bioinformatics. 2022 May 25;:
pubmed: 35643189