Cryopreservation of six Symbiodiniaceae genera and assessment of fatty acid profiles in response to increased salinity treatments.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
20 07 2022
20 07 2022
Historique:
received:
12
05
2022
accepted:
14
07
2022
entrez:
20
7
2022
pubmed:
21
7
2022
medline:
23
7
2022
Statut:
epublish
Résumé
Symbiodiniaceae are a diverse group of dinoflagellates, the majority of which are free-living and/or associated with a variety of protists and other invertebrate hosts. Maintenance of isolated cultures is labour-intensive and expensive, and cryopreservation provides an excellent avenue for their long-term storage. We aimed to cryopreserve 15 cultured isolates from six Symbiodiniaceae genera using dimethyl sulfoxide (DMSO) as the cryoprotectant agent (CPA). Under 15% DMSO, 10 isolates were successfully cryopreserved using either rapid freezing or controlled-rate freezing. Cultures that failed or had low survival, were subjected to (1) a reduction of CPA to 10%, or (2) increased salinity treatment before freezing. At 10% DMSO, three further isolates were successfully cryopreserved. At 15% DMSO there were high cell viabilities in Symbiodinium pilosum treated with 44 parts per thousand (ppt) and 54 ppt culture medium. An isolate of Fugacium sp. successfully cryopreserved after salinity treatments of 54 ppt and 64 ppt. Fatty acid (FA) analyses of S. pilosum after 54 ppt salinity treatment showed increased saturated FA levels, whereas Fugacium sp. had low poly-unsaturated FAs compared to normal salinity (34 ppt). Understanding the effects of salinity and roles of FAs in cryopreservation will help in developing protocols for these ecologically important taxa.
Identifiants
pubmed: 35859115
doi: 10.1038/s41598-022-16735-w
pii: 10.1038/s41598-022-16735-w
pmc: PMC9300622
doi:
Substances chimiques
Cryoprotective Agents
0
Fatty Acids
0
Dimethyl Sulfoxide
YOW8V9698H
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
12408Informations de copyright
© 2022. The Author(s).
Références
Coffroth, M. A. & Santos, S. R. Genetic diversity of symbiotic dinoflagellates in the genus Symbiodinium. Protist 156, 19–34 (2005).
pubmed: 16048130
doi: 10.1016/j.protis.2005.02.004
Pochon, X. et al. Comparison of endosymbiotic and free-living Symbiodinium (Dinophyceae) diversity in a Hawaiian reef environment
doi: 10.1111/j.1529-8817.2009.00797.x
Kemp, D. W. et al. Spatially distinct and regionally endemic Symbiodinium assemblages in the threatened Caribbean reef-building coral Orbicella faveolata. Coral Reefs 34, 535–547 (2015).
doi: 10.1007/s00338-015-1277-z
Mansfield, K. M. & Gilmore, T. D. Innate immunity and cnidarian-Symbiodiniaceae mutualism. Dev. Comp. Immunol. 90, 199–209 (2019).
pubmed: 30268783
doi: 10.1016/j.dci.2018.09.020
Pochon, X. & Gates, R. D. A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai’i. Mol. Phylogenet. Evol. 56, 492–497 (2010).
pubmed: 20371383
doi: 10.1016/j.ympev.2010.03.040
Yorifuji, M. et al. Unique environmental Symbiodiniaceae diversity at an isolated island in the northwestern Pacific. Mol. Phylogenet. Evol. 161, 1–9 (2021).
doi: 10.1016/j.ympev.2021.107158
Qin, Z. et al. Diversity of Symbiodiniaceae in 15 coral species from the southern south China sea: Potential relationship with coral thermal adaptability. Front. Microbiol. 10, 1–12 (2019).
doi: 10.3389/fmicb.2019.02343
Pochon, X. & LaJeunesse, T. C. Miliolidium n. gen, a new Symbiodiniacean genus whose members associate with soritid foraminifera or are free-living. J. Eukaryotic Microbiol. 68, 1–9 (2021).
doi: 10.1111/jeu.12856
Rhodes, L. et al. Cryopreservation of economically valuable marine micro-algae in the classes Bacillariophyceae, Chlorophyceae, Cyanophyceae, Dinophyceae, Haptophyceae, Prasinophyceae, and Rhodophyceae. Cryobiology 52, 152–156 (2006).
pubmed: 16321370
doi: 10.1016/j.cryobiol.2005.10.003
Kihika, J. K. et al. Cryoprotectant treatment tests on three morphologically diverse marine dinoflagellates and the cryopreservation of Breviolum sp. (Symbiodiniaceae). Sci. Rep. 12, 1–12 (2022).
doi: 10.1038/s41598-021-04227-2
Tsai, S. & Lin, C. Advantages and applications of cryopreservation in fisheries science. Braz. Arch. Biol. Technol. 55, 425–433 (2012).
doi: 10.1590/S1516-89132012000300014
Abreu, L., Borges, L., Marangoni, J. & Abreu, P. C. Cryopreservation of some useful microalgae species for biotechnological exploitation. J. Appl. Phycol. 24, 1579–1588 (2012).
doi: 10.1007/s10811-012-9818-0
Taylor, R. & Fletcher, R. L. Cryopreservation of eukaryotic algae—A review of methodologies. J. Appl. Phycol. 10, 481–501 (1999).
doi: 10.1023/A:1008094622412
Santiago-Vázquez, L. Z., Newberger, N. C. & Kerr, R. G. Cryopreservation of the dinoflagellate symbiont of the octocoral Pseudopterogorgia elisabethae. Mar. Biol. 152, 549–556 (2007).
doi: 10.1007/s00227-007-0704-2
Chong, G., Tsai, S., Wang, L.-H., Huang, C.-Y. & Lin, C. Cryopreservation of the gorgonian endosymbiont Symbiodinium. Sci. Rep. 6, 1–9 (2016).
doi: 10.1038/srep18816
Cirino, L. et al. First instance of settlement by cryopreserved coral larvae in symbiotic association with dinoflagellates. Sci. Rep. 9, 18851–18858 (2019).
pubmed: 31827193
pmcid: 6906398
doi: 10.1038/s41598-019-55374-6
Thongpoo, P., Tsai, S. & Lin, C. Assessing the impacts of cryopreservation on the mitochondria of a thermotolerant Symbiodinium lineage: Implications for reef coral conservation. Cryobiology 89, 96–99 (2019).
pubmed: 31158362
doi: 10.1016/j.cryobiol.2019.05.011
Lin, C. et al. Cryopreservation of a thermotolerant lineage of the coral reef dinoflagellate Symbiodinium. Biopreserv. Biobanking 17, 1–10 (2019).
doi: 10.1089/bio.2019.0019
Di Genio, S., Wang, L.-H., Meng, P.-J., Tsai, S. & Lin, C. “Symbio-Cryobank”: Toward the development of a cryogenic archive for the coral reef dinoflagellate symbiont Symbiodiniaceae. Biopreserv. Biobanking 19, 91–93 (2021).
doi: 10.1089/bio.2020.0071
Li, H.-H., Lu, J.-L., Lo, H.-E., Tsai, S. & Lin, C. Effect of cryopreservation on proteins from the ubiquitous marine dinoflagellate Breviolum sp. (Family Symbiodiniaceae). Plants 10, 1–15 (2021).
doi: 10.3390/plants10081731
Cañavate, J. P. & Lubian, L. M. Relationship between cooling rates, cryoprotectant concentrations and salinities in the cryopreservation of marine microalgae. Mar. Biol. 124, 325–334 (1995).
doi: 10.1007/BF00347136
BenMoussa-Dahmen, I., Chtourou, H., Rezgui, F., Sayadi, S. & Dhouib, A. Salinity stress increases lipid, secondary metabolites and enzyme activity in Amphora subtropica and Dunaliella sp. for biodiesel production. Bioresource Technol. 218, 816–825 (2016).
doi: 10.1016/j.biortech.2016.07.022
Mohan, S. V. & Devi, M. P. Salinity stress induced lipid synthesis to harness biodiesel during dual mode cultivation of mixotrophic microalgae. Biores. Technol. 165, 288–294 (2014).
doi: 10.1016/j.biortech.2014.02.103
Xu, X.-Q. & Beardall, J. Effect of salinity on fatty acid composition of a green microalga from an antarctic hypersaline lake. Phytochemistry 45, 655–658 (1997).
doi: 10.1016/S0031-9422(96)00868-0
Zhang, P. et al. A novel omega-3 fatty acid desaturase involved in acclimation processes of polar condition from antarctic ice algae Chlamydomonas sp. ICE-L. Mar. Biotechnol. 13, 393–401 (2011).
doi: 10.1007/s10126-010-9309-8
Morris, G. J. Cryopreservation: An Introduction to Cryopreservation in Culture Collections 1–40 (Institute of Terrestrial Ecology, 1981).
Yamada, T. et al. Roles of the plasma membrane and the cell wall in the responses of plant cells to freezing. Planta 215, 770–778 (2002).
pubmed: 12244442
doi: 10.1007/s00425-002-0814-5
Cronan, J. E. Jr. & Gelmann, E. P. Physical properties of membrane lipids: biological relevance and regulation. Bacteriol. Rev. 39, 232–256 (1975).
pubmed: 1100043
pmcid: 413917
doi: 10.1128/br.39.3.232-256.1975
Ishika, T., Moheimani, N. R., Laird, D. W. & Bahri, P. A. Stepwise culture approach optimizes the biomass productivity of microalgae cultivated using an incremental salinity increase strategy. Biomass Bioenerg. 127, 1–8 (2019).
doi: 10.1016/j.biombioe.2019.105274
Rhodes, L. et al. The Cawthron Institute Culture Collection of micro-algae: A significant national collection. NZ J. Mar. Freshwat. Res. 50, 291–316 (2016).
doi: 10.1080/00288330.2015.1116450
Guillard, R. R. L. Culture of Phytoplankton for Feeding Marine Invertebrates. in Culture of Marine Invertebrate Animals (eds M.L. Smith & M.H. Chanley). (Springer, Boston, MA. 1975). https://doi.org/10.1007/978-1-4615-8714-9_3
Guillard, R. R. L. & Hargraves, P. E. Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia 32, 234–236 (1993).
doi: 10.2216/i0031-8884-32-3-234.1
van der Merwe, R. et al. High salinity tolerance of the Red Sea coral Fungia granulosa under desalination concentrate discharge conditions: an in situ photophysiology experiment. Front. Mar. Sci. 1, 1–8 (2014).
Pochon, X., Wecker, P., Stat, M., Berteaux-Lecellier, V. & Lecellier, G. Towards an in-depth characterization of Symbiodiniaceae in tropical giant clams via metabarcoding of pooled multi-gene amplicons. PeerJ 7, 1–17 (2019).
doi: 10.7717/peerj.6898
Pochon, X., Pawlowski, J., Zaninetti, L. & Rowan, R. High genetic diversity and relative specificity among Symbiodinium-like endosymbiotic dinoflagellates in soritid foraminiferans. Mar. Biol. 139, 1069–1078 (2001).
doi: 10.1007/s002270100674
Pochon, X., Garcia-Cuetos, L., Baker, A. C., Castella, E. & Pawlowski, J. One-year survey of a single Micronesian reef reveals extraordinarily rich diversity of Symbiodinium types in soritid foraminifera. Coral Reefs 26, 867–882 (2007).
doi: 10.1007/s00338-007-0279-x
Stat, M., Pochon, X., Cowie, R. & Gates, R. Specificity in communities of Symbiodinium in corals from Johnston Atoll. Mar. Ecol. Prog. Ser. 386, 83–96 (2009).
doi: 10.3354/meps08080
Pochon, X., Putnam, H. M. & Gates, R. D. Multi-gene analysis of Symbiodinium dinoflagellates: A perspective on rarity, symbiosis, and evolution. PeerJ 2, 1–25 (2014).
doi: 10.7717/peerj.394
Hall, T. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. 41, 95–98 (1999).
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).
pubmed: 29722887
pmcid: 5967553
doi: 10.1093/molbev/msy096
Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783–791 (1985).
pubmed: 28561359
doi: 10.1111/j.1558-5646.1985.tb00420.x
Parrish, C. C., Nichols, P. D., Pethybridge, H. & Young, J. W. Direct determination of fatty acids in fish tissues: Quantifying top predator trophic connections. Oecologia 177, 85–95 (2015).
pubmed: 25376156
doi: 10.1007/s00442-014-3131-3
Miller, M. R. et al. Bioavailability of orally administered active lipid compounds from four different greenshell™ mussel formats. Mar. Drugs 18, 1–19 (2020).
doi: 10.3390/md18110524
Masood, A., Stark, K. D. & Salem, J. N. A simplified and efficient method for the analysis of fatty acid methyl esters suitable for large clinical studies. J. Lipid Res. 46, 2299–2305 (2005).
pubmed: 16061957
doi: 10.1194/jlr.D500022-JLR200
Ketchen, D. J. & Shook, C. L. The application of cluster analysis in strategic management research: An analysis and critique. Strateg. Manag. J. 17, 441–458 (1996).
doi: 10.1002/(SICI)1097-0266(199606)17:6<441::AID-SMJ819>3.0.CO;2-G
Tibshirani, R., Walther, G. & Hastie, T. Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc. Series B Stat. Methodol. 63, 411–423 (2001).
doi: 10.1111/1467-9868.00293
Youn, J.-Y. & Hur, S.-B. Cryopreserved marine microalgae grown using different freezing methods. Algae 24, 257–265 (2009).
doi: 10.4490/ALGAE.2009.24.4.257
Stock, W. et al. Expanding the toolbox for cryopreservation of marine and freshwater diatoms. Sci. Rep. 8, 1–9 (2018).
doi: 10.1038/s41598-018-22460-0
Nakanishi, K., Deuchi, K. & Kuwano, K. Cryopreservation of four valuable strains of microalgae, including viability and characteristics during 15 years of cryostorage. J. Appl. Phycol. 24, 1381–1385 (2012).
doi: 10.1007/s10811-012-9790-8
LaJeunesse, T. C. et al. Revival of Philozoon Geddes for host-specialized dinoflagellates, ‘zooxanthellae’, in animals from coastal temperate zones of northern and southern hemispheres. Eur. J. Phycol. 1–15 (2021).
LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580 (2018).
pubmed: 30100341
doi: 10.1016/j.cub.2018.07.008
Sharma, B., Arora, S., Sahoo, D. & Deswal, R. Comparative fatty acid profiling of Indian seabuckthorn showed altitudinal gradient dependent species-specific variations. Physiol. Mol. Biol. Plants 26, 41–49 (2020).
pubmed: 32158119
doi: 10.1007/s12298-019-00720-1
Papina, M., Meziane, T. & van Woesik, R. Symbiotic zooxanthellae provide the host-coral Montipora digitata with polyunsaturated fatty acids. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 135, 533–537 (2003).
pubmed: 12831773
doi: 10.1016/S1096-4959(03)00118-0
Leblond, J. D. & Chapman, P. J. Lipid class distribution of highly unsaturated long chain fatty acids in marine dinoflagellates. J. Phycol. 36, 1103–1108 (2000).
doi: 10.1046/j.1529-8817.2000.00018.x
Jónasdóttir, S. H. Fatty acid profiles and production in marine phytoplankton. Mar. Drugs 17, 1–20 (2019).
doi: 10.3390/md17030151
Lee, Y.-K., Tan, H.-M. & Low, C.-S. Effect of salinity of medium on cellular fatty acid composition of marine alga Porphyridium cruentum (Rhodophyceae). J. Appl. Phycol. 1, 19–23 (1989).
doi: 10.1007/BF00003531
Renaud, S. M. & Parry, D. L. Microalgae for use in tropical aquaculture. II: Effect of salinity on growth, gross chemical composition and fatty acid composition of three species of marine microalgae. J. Appl. Phycol. 6, 347–356 (1994).
doi: 10.1007/BF02181949
Elenkov, I., Stefanov, K., Dimitrova-Konaklieva, S. & Popov, S. Effect of salinity on lipid composition of Cladophora vagabunda. Phytochemistry 42, 39–44 (1996).
doi: 10.1016/0031-9422(95)00857-8
Allakhverdiev, S. I., Kinoshita, M., Inaba, M., Suzuki, I. & Murata, N. Unsaturated fatty acids in membrane lipids protect the photosynthetic machinery against salt-induced damage in Synechococcus
pubmed: 11299364
pmcid: 88840
doi: 10.1104/pp.125.4.1842
Barati, B., Gan, S. Y., Lim, P. E., Beardall, J. & Phang, S. M. Green algal molecular responses to temperature stress. Acta Physiol. Plant. 41, 1–19 (2019).
doi: 10.1007/s11738-019-2813-1