Influence of Seasonal Variation on the Chemical Composition and Biological Activities of Essential Oil from Eugenia pohliana DC Leaves.
Caatinga
Maçã do mato
Myrtaceae
antimicrobial activity
antioxidant activity
Journal
Chemistry & biodiversity
ISSN: 1612-1880
Titre abrégé: Chem Biodivers
Pays: Switzerland
ID NLM: 101197449
Informations de publication
Date de publication:
Sep 2022
Sep 2022
Historique:
received:
10
01
2022
accepted:
20
07
2022
pubmed:
22
7
2022
medline:
20
9
2022
entrez:
21
7
2022
Statut:
ppublish
Résumé
The purpose of this study was to analyses the influence of seasonal variation on the chemical composition and antimicrobial, antioxidant and cytotoxicity activities of the essential oil (EO) extracted from the leaves of Eugenia pohliana. Chemical characterization of the samples - by gas chromatography-mass spectrometry - found 35 and 38 components for summer and winter, respectively, of the EO from E. pohliana leaves, totaling 47 different compounds. Analysis of antioxidant capacity (DPPH, ABTS and TAC) revealed that the summer EO showed greater free radical scavenging capacity than the winter. Similarly, the summer EO exhibited superior antimicrobial potential (MIC=128-512 μg/mL and MMC=128-1024 μg/mL, compared to the winter EO (128-2048 μg/mL and 256-2048 μg/mL, respectively). Results showed that both oils had a low potential to cause hemolysis. This study provides new scientific evidence on the influence of seasonality on the pharmacological properties of E. pohliana leaves and its potential for the development of herbal medicines.
Identifiants
pubmed: 35864035
doi: 10.1002/cbdv.202200034
doi:
Substances chimiques
Anti-Bacterial Agents
0
Anti-Infective Agents
0
Antioxidants
0
Free Radicals
0
Oils, Volatile
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202200034Subventions
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
Organisme : Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco
ID : BFP-0122-4.03/19
Informations de copyright
© 2022 Wiley-VHCA AG, Zurich, Switzerland.
Références
G. Heydarirad, A. Tavakoli, K. Cooley, M. Pasalar, ‘A review on medical plants advised for neuralgia from the perspective of canon of medicine’, Adv. Integr. Med. 2020, 8, 230-235.
A. Soltanbeigi, M. Özgüven, M. Hassanpouraghdam, ‘Planting-date and cutting-time affect the growth and essential oil composition of Mentha piperita and Mentha arvensis’, Ind. Crops Prod. 2021, 170, 113790.
T. Oliveira, A. Bombo, A. Oliveira, V. Garcia, ‘Appezzato-da-Glória Seasonal variation of the essential oil from two Brazilian native Aldama La Llave (Asteraceae) species’, An. Acad. Bras. Cienc. 2016, 88, 1899-1907.
A. Parki, P. Chaubey, O. Prakash, R. Kumar, A. Pant, ‘Seasonal variation in essential oil compositions and antioxidant properties of Acorus calamus L. Accessions’, Medicine 2021, 4, 8-93.
L. Souza, P. Bezzera-Silva, D. Navarro, A. Silva, M. Santos Correia, M. Silva, R. Figueiredo, ‘The chemical composition and trypanocidal activity of volatile oils from Brazilian Caatinga plants’, Biomed. Pharmacother. 2017, 96, 1055-1064.
A. Lourenço, M. Barbosa, ‘Myrtaceae em restingas no limite norte de distribuição da Mata Atlântica, Brasil’, Rodriguesia 2012, 63, 373-393.
M. Sobral, M. Souza, F. Mazine-Capelo, E. Lucas, ‘Nomenclatural notes on Brazilian Myrtaceae’, Phytotaxa 2014, 8, 51-58.
W. Andrade, E. Araújo Lima, M. Rodal, C. Encarnação, R. Mendonça Pimentel, ‘Influência da precipitação na abundância de populações de plantas da Caatinga’, Rev. Geogr. Phys. Geol. Dyn. 2010, 26, 161-184.
E. Matias, E. Alves, M. Silva, V. Carvalho, F. Figueredo, J. Ferreira, J. Costa, ‘Seasonal variation, chemical composition and biological activity of the essential oil of Cordia verbenacea DC (Boraginaceae) and the sabinene’, Ind. Crops Prod. 2016, 87, 45-53.
T. Luz, J. Leite, L. Mesquita, S. Bezerra, D. Silveira, J. Mesquita, D. Coutinho, ‘Seasonal variation in the chemical composition and biological activity of the essential oil of Mesosphaerum suaveolens (L.) Kuntze’, Ind. Crops Prod. 2020, 153, 112600.
S. M. Mazutti da Silva, C. R. Rezende Costa, G. Martins Gelfuso, E. Silva Guerra, E. K. Medeiros Nóbrega, S. Gomes, P. Magalhães, ‘Wound healing effect of essential oil extracted from Eugenia dysenterica DC (Myrtaceae) leaves’, Molecules 2019, 24, 2-17.
W. K. Costa, N. Gomes, B. Souza dos Santos, C. Bezerra Filho, A. Oliveira, G. Silva, M. Silva, ‘First report on the chemical composition of leaf essential oil of Myrciaria pilosa Sobral & Couto and its antimicrobial and antivirulence activities against Staphylococcus aureus’, Nat. Prod. Res. 2020, 36, 1-6.
O. Ferreira, J. Cruz, C. Franco, S. Silva, W. Costa, M. S. Oliveira, E. Andrade, ‘First Report on Yield and Chemical Composition of Essential Oil Extracted from Myrcia eximia DC (Myrtaceae) from the Brazilian Amazon’, Molecules 2020, 25, 783-794.
A. P. Ames-Sibin, C. L. Barizão, C. Castro-Ghizoni, F. Silva, A. Sá-Nakanishi, L. Bracht, J. Comar, ‘β-Caryophyllene, the major constituent of copaiba oil, reduces systemic inflammation and oxidative stress in arthritic rats’, J. Cell. Biochem. 2018, 119, 10262-10277.
C. Oliveira-Tintino, R. Pessoa, M. Fernandes, I. Alcântara, B. da Silva, M. de Oliveira, I. de Menezes, ‘Anti-inflammatory and anti-edematogenic action of the Croton campestris A. St.-Hil (Euphorbiaceae) essential oil and the compound β-caryophyllene in vivo models’, Phytomedicine 2018, 41, 82-95.
R. Scandiffio, F. Geddo, E. Cottone, G. Querio, S. Antoniotti, M. Gallo, P. Bovolin, ‘Protective effects of (E)-β-Caryophyllene (BCP) in chronic inflammation’, Nutrients 2020, 12, 3273-3297.
S. Arul, H. Rajagopalan, J. Ravi, H. Dayalan, ‘Beta-caryophyllene suppresses ovarian cancer proliferation by inducing cell cycle arrest and apoptosis’, Anti-Cancer Agents Med. Chem. 2020, 20, 1530-1537.
N. Irrera, A. D'Ascola, G. Pallio, A. Bitto, F. Mannino, V. Arcoraci, F. Squadrito, ‘β-caryophyllene inhibits cell proliferation through a direct modulation of CB2 receptors in glioblastoma cells’, Cancers 2020, 12, 1038-1052.
S. Dahham, Y. Tabana, M. Asif, M. Ahmed, D. Babu, L. Hassan, A. Majid, ‘β-Caryophyllene Induces Apoptosis and Inhibits Angiogenesis in Colorectal Cancer Models’, Int. J. Mol. Sci. 2021, 22, 10550-10570.
M. Huang, A. Sanchez-Moreiras, C. Abel, R. Sohrabi, S. Lee, J. Gershenzon, D. Tholl, ‘The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-β-caryophyllene, is a defense against a bacterial pathogen’, New Phytol. 2012, 193, 997-1008.
S. Purkait, A. Bhattacharya, A. Bag, R. Chattopadhyay, ‘Evaluation of antibiofilm efficacy of essential oil components β-caryophyllene, cinnamaldehyde and eugenol alone and in combination against biofilm formation and preformed biofilms of Listeria monocytogenes and Salmonella typhimurium’, Lett. Appl. Microbiol. 2020, 71, 195-202.
H. Woo, J. Yang, M. Lee, H. Kim, H. Kwon, M. Park, J. Kim, ‘Inhibitory effects of β-caryophyllene on Helicobacter pylori infection in vitro and in vivo’, Int. J. Mol. Sci. 2020, 21, 1008-1022.
M. Flores-Soto, J. Corona-Angeles, A. Tejeda-Martinez, P. Flores-Guzman, I. Luna-Mujica, V. Chaparro-Huerta, J. Viveros-Paredes, ‘β-Caryophyllene exerts protective antioxidant effects through the activation of NQO1 in the MPTP model of Parkinson's disease’, Neurosci. Lett. 2021, 742, 135534-135542.
U. Kanojia, S. Chaturbhuj, R. Sankhe, R. Surubhotla, N. Krishnadas, A. Kishore, ‘Beta-caryophyllene, a CB2R selective agonist, protects against cognitive impairment caused by neuro-inflammation and not in dementia due to ageing induced by mitochondrial dysfunction’, CNS Neurol. Disord. Drug Targets 2021, 20, 963-974.
H. Ullah, A. Di Minno, C. Santarcangelo, H. Khan, M. Daglia, ‘Improvement of Oxidative Stress and Mitochondrial Dysfunction by β-Caryophyllene: A Focus on the Nervous System’, Antioxidants 2021, 10, 546-568.
L. Hui, G. Zhao, J. Zhao, ‘δ-Cadinene inhibits the growth of ovarian cancer cells via caspase-dependent apoptosis and cell cycle arrest’, Int. J. Clin. Exp. Pathol. 2015, 8, 6046-6057.
M. Govindarajan, M. Rajeswary, G. Benelli, ‘δ-Cadinene, calarene and δ-4-carene from Kadsura heteroclita essential oil as novel larvicides against malaria, dengue and filariasis mosquitoes’, Comb. Chem. High Throughput Screening 2016, 19, 565-571.
H. Chang, Y. Cheng, C. Wu, S. Chang, T. Chang, Y. Su, ‘Antifungal activity of essential oil and its constituents from Calocedrus macrolepis var. formosana Florin leaf against plant pathogenic fungi’, Bioresour. Technol. 2008, 99, 6266-6270.
L. Ding, R. Pfoh, S. Ruhl, S. Qin, H. Laatsch, ‘T-muurolol sesquiterpenes from the marine Streptomyces sp. M491 and revision of the configuration of previously reported amorphanes’, J. Nat. Prod. 2009, 72, 99-101.
M. Govindarajan, G. Benelli, ‘Eco-friendly larvicides from Indian plants: effectiveness of lavandulyl acetate and bicyclogermacrene on malaria, dengue and Japanese encephalitis mosquito vectors’, Ecotoxicol. Environ. Saf. 2016, 133, 395-402.
F. Francomano, A. Caruso, A. Barbarossa, A. Fazio, C. La Torre, J. Ceramella, M. Sinicropi, ‘β-Caryophyllene: a sesquiterpene with countless biological properties’, Appl. Sci. 2019, 9, 5420-5439.
R. John, K. R. Sabu, A. Manilal, ‘Chemical Composition, Antioxidant, and Mosquito Larvicidal Activity of Essential Oils from Hyptis capitata Jacq’, J. Exp. Pharmacol. 2022, 14, 195-204.
S. Afoulous, H. Ferhout, E. G. Raoelison, A. Valentin, B. Moukarzel, F. Couderc, J. Bouajila, ‘Chemical composition and anticancer, antiinflammatory, antioxidant and antimalarial activities of leaves essential oil of Cedrelopsis grevei’, Food Chem. Toxicol. 2013, 56, 352-362.
N. Ali, B. Chhetri, N. Dosoky, K. Shari, J. Al-Fahad, L. Wessjohann, W. Setzer, ‘Antimicrobial, antioxidant, and cytotoxic activities of Ocimum forskolei and Teucrium yemense (Lamiaceae) essential oils’, Medicine 2017, 4, 17-31.
J. Silva, E. Andrade, L. Barreto, N. Da Silva, A. Ribeiro, R. Montenegro, J. Maia, ‘Chemical composition of four essential oils of Eugenia from the Brazilian Amazon and their cytotoxic and antioxidant activity’, Medicine 2017, 4, 51-61.
C. Fernandes, J. Rezende, E. Silva, F. Silva, L. Stenico, A. Crotti, L. Miranda, ‘Chemical composition and biological activities of essential oil from flowers of Psidium guajava (Myrtaceae)’, Braz. J. Biol. 2020, 81, 728-736.
A. Paredes, Y. Leyton, C. Riquelme, G. Morales, ‘A plant from the altiplano of Northern Chile Senecio nutans, inhibits the Vibrio cholerae pathogen’, Springerplus 2016, 5, 1-7.
M. Salem, M. El-Hefny, H. Ali, H. Elansary, R. Nasser, A. El-Settawy, A. Salem, ‘Antibacterial activity of extracted bioactive molecules of Schinus terebinthifolius ripened fruits against some pathogenic bacteria’, Microb. Pathog. 2018, 120, 119-127.
F. Bakkali, S. Averbeck, D. Averbeck, M. Idaomar, ‘Biological effects of essential oils - a review’, Food Chem. Toxicol. 2008, 46, 446-475.
J. Heltzel, S. Ponticelli, L. Sanders, J. Duzen, V. Cody, J. Pace, M. Sutton, ‘Sliding clamp-DNA interactions are required for viability and contribute to DNA polymerase management in Escherichia coli’, J. Mol. Biol. 2009, 387, 74-91.
M. Song, P. Pham, M. Olson, J. Carter, M. Franden, R. Schaaper, C. McHenry, ‘The δ and δ′ subunits of the DNA polymerase III holoenzyme are essential for initiation complex formation and processive elongation’, J. Biol. Chem. 2001, 276, 35165-35175.
F. Rodrigues, L. Oliveira, F. Rodrigues, M. Saraiva, S. Almeida, M. Cabral, J. Costa, ‘Chemical composition, antibacterial and antifungal activities of essential oil from Cordia verbenacea DC leaves’, Pharmacogn. Res. 2012, 4, 161-165.
C. Moiteiro, T. Esteves, L. Ramalho, R. Rojas, S. Alvarez, S. Zacchino, H. Bragança, ‘Essential oil characterization of two Azorean Cryptomeria japonica populations and their biological evaluations’, Nat. Prod. Commun. 2013, 8, 1775-1790.
I. Ogunwande, N. Olawore, O. Ekundayo, T. Walker, J. Schmidt, W. Setzer, ‘Studies on the essential oils composition, antibacterial and cytotoxicity of Eugenia uniflora L.’, Int. J. Aromather. 2005, 15, 147-152.
M. Magina, E. Dalmarco, A. Wisniewski, E. Simionatto, J. Dalmarco, M. Pizzolatti, I. Brighente, ‘Chemical composition and antibacterial activity of essential oils of Eugenia species’, J. Nat. Med. 2009, 63, 345-350.
O. Politeo, M. Jukic, M. Milos, ‘Comparison of chemical composition and antioxidant activity of glycosidically bound and free volatiles from clove (Eugenia caryophyllata Thunb’, J. Food Biochem. 2010, 34, 129-141.
P. Jimenez, S. Fortier, T. Lotufo, C. Pessoa, M. Moraes, M. Moraes, L. Costa-Lotufo, ‘Biological activity in extracts of ascidians (Tunicata, Ascidiacea) from the northeastern Brazilian coast’, J. Exp. Mar. Biol. Ecol. 2003, 287, 93-101.
P. Prayong, S. Barusrux, N. Weerapreeyakul, ‘Cytotoxic activity screening of some indigenous Thai plants’, Fitoterapia 2008, 79, 598-601.
N. Santana, R. da Silva, S. Fourmentin, K. dos Anjos, M. Ootan, A. da Silva, G. Machado, ‘Synthesis, characterization and cytotoxicity of the Eugenia brejoensis essential oil inclusion complex with β-cyclodextrin’, J. Drug Delivery Sci. Technol. 2020, 60, 101876-101884.
N. Jaradat, M. Qneibi, M. Hawash, N. Al-Maharik, M. Qadi, M. Abualhasan, S. Bdir, ‘Assessing Artemisia arborescens essential oil compositions, antimicrobial, cytotoxic, anti-inflammatory, and neuroprotective effects gathered from two geographic locations in Palestine’, Ind. Crops Prod. 2022, 176, 114360-114374.
R. Adams, ‘Identification of essential oil components by gas chromatography/mass spectrometry’, Allured Publishing Corporation 2007, 456.
W. Brand-Williams, M. Cuvelier, C. Berset, ‘Use of a free radical method to evaluate antioxidant activity’, LWT-Food Sci. Technol. 1995, 28, 25-30.
R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, ‘Antioxidant activity applying an improved ABTS radical cation decolorization assay’, Free Radical Biol. Med. 1999, 26, 1231-1237.
M. Aguilar Urbano, M. Pineda Priego, P. Prieto, ‘Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E1’, Anal. Biochem. 2013, 269, 337-341.
CLSI Clinical Lab Standards Institute, ‘Performance standards for antimicrobial susceptibility testing’, CLSI Suppl 2016, 35, 16-38.
CLSI Clinical Lab Standards Institute, ‘Performance standards for antifungal susceptibility testing of yeasts’, CLSI Suppl M60 2017, 1-12.