Assembly of planar chiral superlattices from achiral building blocks.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
21 Jul 2022
21 Jul 2022
Historique:
received:
09
08
2021
accepted:
07
07
2022
entrez:
21
7
2022
pubmed:
22
7
2022
medline:
22
7
2022
Statut:
epublish
Résumé
The spontaneous assembly of chiral structures from building blocks that lack chirality is fundamentally important for colloidal chemistry and has implications for the formation of advanced optical materials. Here, we find that purified achiral gold tetrahedron-shaped nanoparticles assemble into two-dimensional superlattices that exhibit planar chirality under a balance of repulsive electrostatic and attractive van der Waals and depletion forces. A model accounting for these interactions shows that the growth of planar structures is kinetically preferred over similar three-dimensional products, explaining their selective formation. Exploration and mapping of different packing symmetries demonstrates that the hexagonal chiral phase forms exclusively because of geometric constraints imposed by the presence of constituent tetrahedra with sharp tips. A formation mechanism is proposed in which the chiral phase nucleates from within a related 2D achiral phase by clockwise or counterclockwise rotation of tetrahedra about their central axis. These results lay the scientific foundation for the high-throughput assembly of planar chiral metamaterials.
Identifiants
pubmed: 35864092
doi: 10.1038/s41467-022-31868-2
pii: 10.1038/s41467-022-31868-2
pmc: PMC9304327
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
4207Subventions
Organisme : Welch Foundation
ID : C-1954
Organisme : David and Lucile Packard Foundation (David & Lucile Packard Foundation)
ID : 2018-68049
Informations de copyright
© 2022. The Author(s).
Références
Small. 2009 Jul;5(14):1600-30
pubmed: 19517482
Langmuir. 2010 Dec 21;26(24):18710-7
pubmed: 21077612
J Phys Chem Lett. 2020 Mar 5;11(5):1795-1801
pubmed: 32069408
Science. 2004 Nov 19;306(5700):1353-5
pubmed: 15550665
J Am Chem Soc. 2009 Jun 24;131(24):8455-9
pubmed: 19331419
Chem Asian J. 2014 Sep;9(9):2635-40
pubmed: 24976486
Nat Mater. 2014 Sep;13(9):862-6
pubmed: 24997737
Nat Nanotechnol. 2013 Sep;8(9):676-81
pubmed: 23955810
Nat Mater. 2011 Nov 20;11(2):131-7
pubmed: 22101811
Nat Chem. 2013 Jun;5(6):466-73
pubmed: 23695627
Nano Lett. 2017 Sep 13;17(9):5830-5835
pubmed: 28820597
Phys Rev Lett. 2003 Mar 14;90(10):107404
pubmed: 12689032
Langmuir. 2008 Sep 16;24(18):10235-9
pubmed: 18700748
Science. 2018 Dec 21;362(6421):1396-1400
pubmed: 30573624
Phys Rev Lett. 2007 Dec 31;99(26):268301
pubmed: 18233607
Chem Rev. 2016 Nov 23;116(22):13752-13990
pubmed: 27754649
Nature. 2018 Sep;561(7723):378-382
pubmed: 30232427
Nat Commun. 2015 Aug 25;6:8102
pubmed: 26303016
J Am Chem Soc. 2007 Jul 4;129(26):8062-3
pubmed: 17552525
Science. 2014 Sep 5;345(6201):1149-53
pubmed: 25061133
Angew Chem Int Ed Engl. 2010 Sep 10;49(38):6760-3
pubmed: 20715244
Science. 2011 Jan 14;331(6014):199-202
pubmed: 21233384
Sci Adv. 2017 May 17;3(5):e1602735
pubmed: 28560336
Nano Lett. 2021 Jan 13;21(1):130-135
pubmed: 33301332
Adv Mater. 2020 Oct;32(41):e1905758
pubmed: 31834668
Int J Mol Sci. 2012 Oct 08;13(10):12773-856
pubmed: 23202925
Angew Chem Int Ed Engl. 2020 Jul 27;59(31):12976-12983
pubmed: 32337812
J Am Chem Soc. 2014 Mar 12;136(10):3716-9
pubmed: 24372072
Nano Lett. 2015 Aug 12;15(8):5617-23
pubmed: 26237212
Science. 2020 May 8;368(6491):642-648
pubmed: 32273399
Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):E4812-21
pubmed: 25344532
Proc Natl Acad Sci U S A. 2006 Jul 11;103(28):10612-7
pubmed: 16818891
ACS Nano. 2021 Oct 26;15(10):15953-15961
pubmed: 34554725
Angew Chem Int Ed Engl. 2004 Jul 12;43(28):3673-7
pubmed: 15248270
Nano Lett. 2016 Jan 13;16(1):663-70
pubmed: 26666399
ACS Nano. 2012 Jan 24;6(1):609-14
pubmed: 22098586
ACS Nano. 2018 Nov 27;12(11):11657-11663
pubmed: 30403839
Science. 2010 Mar 12;327(5971):1355-9
pubmed: 20150443
J Am Chem Soc. 2014 Apr 23;136(16):5868-71
pubmed: 24655011
Nature. 2008 Sep 18;455(7211):380-2
pubmed: 18800136
ACS Nano. 2020 Nov 24;14(11):15144-15153
pubmed: 33103878
J Phys Chem Lett. 2020 Apr 2;11(7):2464-2469
pubmed: 32160470
Nature. 2018 Apr;556(7701):360-365
pubmed: 29670265
Science. 2022 Mar 25;375(6587):1422-1426
pubmed: 35324292
Nature. 2020 Apr;580(7804):487-490
pubmed: 32322078
Soft Matter. 2015 Nov 28;11(44):8684-91
pubmed: 26376756
ACS Nano. 2016 Jun 28;10(6):6180-8
pubmed: 27172606
Nature. 2009 Dec 10;462(7274):773-7
pubmed: 20010683
Nature. 2010 Jul 22;466(7305):474-7
pubmed: 20651688
Nat Nanotechnol. 2010 Nov;5(11):783-7
pubmed: 21037572
J Am Chem Soc. 2014 May 28;136(21):7603-6
pubmed: 24830921
Nano Lett. 2015 Feb 11;15(2):1012-7
pubmed: 25562383
Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2240-5
pubmed: 22308436