Spectral signatures of excess-proton waiting and transfer-path dynamics in aqueous hydrochloric acid solutions.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
21 Jul 2022
21 Jul 2022
Historique:
received:
05
10
2021
accepted:
22
06
2022
entrez:
21
7
2022
pubmed:
22
7
2022
medline:
22
7
2022
Statut:
epublish
Résumé
The theoretical basis for linking spectral signatures of hydrated excess protons with microscopic proton-transfer mechanisms has so far relied on normal-mode analysis. We introduce trajectory-decomposition techniques to analyze the excess-proton dynamics in ab initio molecular-dynamics simulations of aqueous hydrochloric-acid solutions beyond the normal-mode scenario. We show that the actual proton transfer between two water molecules involves for relatively large water-water separations crossing of a free-energy barrier and thus is not a normal mode, rather it is characterized by two non-vibrational time scales: Firstly, the broadly distributed waiting time for transfer to occur with a mean value of 200-300 fs, which leads to a broad and weak shoulder in the absorption spectrum around 100 cm
Identifiants
pubmed: 35864099
doi: 10.1038/s41467-022-31700-x
pii: 10.1038/s41467-022-31700-x
pmc: PMC9304333
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
4210Subventions
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : SFB 1078, C1
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : SFB 1349, C4
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : EXC-2033 390677874
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : EXC-2033 390677874
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : SFB 1078, C1
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : SFB 1349, C4
Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : 695437
Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : 835117
Informations de copyright
© 2022. The Author(s).
Références
ACS Cent Sci. 2019 Jul 24;5(7):1269-1277
pubmed: 31403075
J Chem Phys. 2018 Mar 28;148(12):123309
pubmed: 29604884
Science. 2015 Oct 2;350(6256):78-82
pubmed: 26430117
J Chem Phys. 2016 Mar 14;144(10):104503
pubmed: 26979693
Science. 2017 Aug 4;357(6350):491-495
pubmed: 28705988
J Chem Phys. 2004 Jan 8;120(2):516-23
pubmed: 15267886
J Chem Phys. 2010 Apr 21;132(15):154104
pubmed: 20423165
J Chem Phys. 2015 Jan 7;142(1):014104
pubmed: 25573550
J Phys Chem B. 2019 Aug 22;123(33):7214-7224
pubmed: 31361141
J Chem Phys. 2021 May 21;154(19):194506
pubmed: 34240917
J Chem Phys. 2015 Dec 14;143(22):224108
pubmed: 26671359
Phys Chem Chem Phys. 2015 May 7;17(17):11898-907
pubmed: 25872169
J Phys Chem Lett. 2017 Nov 2;8(21):5246-5252
pubmed: 28976760
J Chem Phys. 2018 Jun 14;148(22):222833
pubmed: 29907063
J Phys Chem Lett. 2017 Jun 1;8(11):2373-2380
pubmed: 28488865
J Chem Phys. 2004 Sep 1;121(9):3973-83
pubmed: 15332943
Phys Rev Lett. 2009 Dec 4;103(23):238302
pubmed: 20366181
J Am Chem Soc. 2010 Sep 15;132(36):12597-604
pubmed: 20731390
Nat Commun. 2020 Mar 31;11(1):1611
pubmed: 32235854
J Chem Phys. 2020 Sep 28;153(12):124506
pubmed: 33003749
J Phys Chem A. 2020 Jul 9;124(27):5599-5605
pubmed: 32525677
J Phys Chem Lett. 2012 Aug 16;3(16):2135-40
pubmed: 26295760
J Phys Chem B. 2018 Mar 15;122(10):2792-2802
pubmed: 29452488
Chem Sci. 2018 Jul 30;9(35):7126-7132
pubmed: 30310634
J Phys Chem B. 2016 Mar 3;120(8):1793-804
pubmed: 26575795
Chemphyschem. 2006 Sep 11;7(9):1848-70
pubmed: 16929553
J Phys Chem B. 2019 Jul 5;123(26):5536-5544
pubmed: 31180658
Proc Natl Acad Sci U S A. 2009 Jul 21;106(29):11837-44
pubmed: 19584244
Science. 2016 Dec 2;354(6316):1131-1135
pubmed: 27934761
Phys Rev Lett. 2006 Apr 7;96(13):138305
pubmed: 16712045
J Chem Phys. 2018 Jan 7;148(1):014903
pubmed: 29306292
J Am Chem Soc. 2021 Nov 10;143(44):18672-18683
pubmed: 34723507
Nat Commun. 2018 Jan 22;9(1):311
pubmed: 29358659
Chem Rev. 2016 Jul 13;116(13):7642-72
pubmed: 27314430
J Phys Chem A. 2017 Apr 27;121(16):3056-3070
pubmed: 28351145
J Phys Chem Lett. 2018 Feb 15;9(4):798-803
pubmed: 29360366
Nat Chem. 2018 Sep;10(9):932-937
pubmed: 30061612
Proc Natl Acad Sci U S A. 2013 Aug 20;110(34):13723-8
pubmed: 23868853
Phys Chem Chem Phys. 2014 Mar 14;16(10):4933-41
pubmed: 24477279
J Phys Chem B. 2014 Jul 3;118(26):7211-20
pubmed: 24837190
Proc Natl Acad Sci U S A. 2010 Jul 6;107(27):12068-73
pubmed: 20566886
J Phys Chem B. 2020 Oct 8;124(40):8868-8876
pubmed: 32924490
J Phys Chem B. 2020 Jul 9;124(27):5665-5675
pubmed: 32482074
Nat Chem. 2013 Jan;5(1):29-35
pubmed: 23247174
J Chem Phys. 2019 Jul 21;151(3):034501
pubmed: 31325917
J Phys Chem B. 2010 Jul 29;114(29):9555-62
pubmed: 20593833
J Phys Chem B. 2008 Aug 7;112(31):9456-66
pubmed: 18630857
J Chem Phys. 2020 May 21;152(19):194103
pubmed: 33687235
Angew Chem Int Ed Engl. 2019 Mar 4;58(10):3000-3013
pubmed: 30022575
J Chem Phys. 2007 Jan 7;126(1):014101
pubmed: 17212484
J Chem Phys. 2017 Apr 21;146(15):154507
pubmed: 28433032
J Phys Chem Lett. 2019 May 2;10(9):2287-2294
pubmed: 30999753
J Chem Phys. 2007 Sep 21;127(11):114105
pubmed: 17887826