Epitope detection in monocytes (EDIM) for liquid biopsy including identification of GD2 in childhood neuroblastoma-a pilot study.
Journal
British journal of cancer
ISSN: 1532-1827
Titre abrégé: Br J Cancer
Pays: England
ID NLM: 0370635
Informations de publication
Date de publication:
10 2022
10 2022
Historique:
received:
14
08
2020
accepted:
09
05
2022
revised:
21
04
2022
pubmed:
22
7
2022
medline:
1
10
2022
entrez:
21
7
2022
Statut:
ppublish
Résumé
Neuroblastoma (NB) is the most common paediatric extracranial solid malignancy. We analysed the role of the epitope detection in monocytes (EDIM) technique for liquid biopsy in NB patients. Tumour epitopes transketolase-like 1 (TKTL1), Apo10 (DNaseX) and GD2 were assessed: expression levels in seven NB tumour samples and five NB cell lines were analysed using RT-PCR and flow cytometry. LAN-1 cells were co-cultured with blood and assessed using EDIM. Peripheral blood macrophages of patients with neuroblastoma (n = 38) and healthy individuals (control group, n = 37) were labelled (CD14 mRNA expression of TKTL1 and DNaseX/Apo10 was elevated in 6/7 NB samples. Spike experiments showed upregulation of TKTL1, Apo10 and GD2 in LAN-1 cells following co-culturing with blood. TKTL1 and Apo10 were present in macrophages of 36/38 patients, and GD2 in 15/19 patients. The 37 control samples were all negative. EDIM expression scores of the three epitopes allowed differentiation between NB patients and healthy individuals. The EDIM test might serve as a non-invasive tool for liquid biopsy in children suffering from NB. Future studies are necessary for assessing risk stratification, tumour biology, treatment monitoring, and early detection of tumour relapses.
Sections du résumé
BACKGROUND
Neuroblastoma (NB) is the most common paediatric extracranial solid malignancy. We analysed the role of the epitope detection in monocytes (EDIM) technique for liquid biopsy in NB patients.
METHODS
Tumour epitopes transketolase-like 1 (TKTL1), Apo10 (DNaseX) and GD2 were assessed: expression levels in seven NB tumour samples and five NB cell lines were analysed using RT-PCR and flow cytometry. LAN-1 cells were co-cultured with blood and assessed using EDIM. Peripheral blood macrophages of patients with neuroblastoma (n = 38) and healthy individuals (control group, n = 37) were labelled (CD14
RESULTS
mRNA expression of TKTL1 and DNaseX/Apo10 was elevated in 6/7 NB samples. Spike experiments showed upregulation of TKTL1, Apo10 and GD2 in LAN-1 cells following co-culturing with blood. TKTL1 and Apo10 were present in macrophages of 36/38 patients, and GD2 in 15/19 patients. The 37 control samples were all negative. EDIM expression scores of the three epitopes allowed differentiation between NB patients and healthy individuals.
CONCLUSIONS
The EDIM test might serve as a non-invasive tool for liquid biopsy in children suffering from NB. Future studies are necessary for assessing risk stratification, tumour biology, treatment monitoring, and early detection of tumour relapses.
Identifiants
pubmed: 35864157
doi: 10.1038/s41416-022-01855-x
pii: 10.1038/s41416-022-01855-x
pmc: PMC9519569
doi:
Substances chimiques
Biomarkers, Tumor
0
Epitopes
0
Organothiophosphorus Compounds
0
RNA, Messenger
0
VX
9A4381183B
TKTL1 protein, human
EC 2.2.1.1
Transketolase
EC 2.2.1.1
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1324-1331Informations de copyright
© 2022. The Author(s).
Références
Kaatsch P, Grabow D, Spix C German Childhood Cancer Registry—Annual Report 2016 (1980-2015). Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI) at the University Medical Center of the Johannes Gutenberg University Mainz. 2016.
Maris JM, Hogarty MD, Bagatell R, Cohn SL. Neuroblastoma. Lancet. 2007;369:2106–20.
pubmed: 17586306
doi: 10.1016/S0140-6736(07)60983-0
Maris JM. Recent advances in neuroblastoma. N. Engl J Med. 2010;362:2202–11.
pubmed: 20558371
pmcid: 3306838
doi: 10.1056/NEJMra0804577
Matthay KK, Maris JM, Schleiermacher G, Nakagawara A, Mackall CL, Diller L, et al. Neuroblastoma. Nat Rev Dis Prim. 2016;2:16078.
pubmed: 27830764
doi: 10.1038/nrdp.2016.78
Cohn SL, Pearson AD, London WB, Monclair T, Ambros PF, Brodeur GM, et al. The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J Clin Oncol. 2009;27:289–97.
pubmed: 19047291
pmcid: 2650388
doi: 10.1200/JCO.2008.16.6785
Ladenstein R, Potschger U, Pearson ADJ, Brock P, Luksch R, Castel V, et al. Busulfan and melphalan versus carboplatin, etoposide, and melphalan as high-dose chemotherapy for high-risk neuroblastoma (HR-NBL1/SIOPEN): an international, randomised, multi-arm, open-label, phase 3 trial. Lancet Oncol. 2017;18:500–14.
pubmed: 28259608
doi: 10.1016/S1470-2045(17)30070-0
van Zogchel LMJ, van Wezel EM, van Wijk J, Stutterheim J, Bruins WSC, Zappeij-Kannegieter L, et al. Hypermethylated RASSF1A as circulating tumor DNA marker for disease monitoring in neuroblastoma. JCO Precis Oncol. 2020;4:291–306.
van Zogchel LMJ, Zappeij-Kannegieter L, Javadi A, Lugtigheid M, Gelineau NU, Lak NSM, et al. Specific and sensitive detection of neuroblastoma mRNA markers by multiplex RT-qPCR. Cancers. 2021;13:150.
Jansen N, Coy JF. Diagnostic use of epitope detection in monocytes blood test for early detection of colon cancer metastasis. Future Oncol. 2013;9:605–9.
pubmed: 23560382
doi: 10.2217/fon.13.8
Leers MP, Nap M, Herwig R, Delaere K, Nauwelaers F. Circulating PSA-containing macrophages as a possible target for the detection of prostate cancer: a three-color/five-parameter flow cytometric study on peripheral blood samples. Am J Clin Pathol. 2008;129:649–56.
pubmed: 18343793
doi: 10.1309/THWWRU8L42U5H9PB
Grimm M, Kraut W, Hoefert S, Krimmel M, Biegner T, Teriete P, et al. Evaluation of a biomarker based blood test for monitoring surgical resection of oral squamous cell carcinomas. Clin Oral Investig. 2016;20:329–38.
pubmed: 26153867
doi: 10.1007/s00784-015-1518-0
Parihar A, Eubank TD, Doseff AI. Monocytes and macrophages regulate immunity through dynamic networks of survival and cell death. J Innate Immun. 2010;2:204–15.
pubmed: 20375558
pmcid: 2956013
doi: 10.1159/000296507
Grimm M, Schmitt S, Teriete P, Biegner T, Stenzl A, Hennenlotter J, et al. A biomarker based detection and characterization of carcinomas exploiting two fundamental biophysical mechanisms in mammalian cells. BMC Cancer. 2013;13:569.
pubmed: 24304513
pmcid: 4235042
doi: 10.1186/1471-2407-13-569
Coy JF. EDIM-TKTL1/Apo10 blood test: an innate immune system based liquid biopsy for the early detection, characterization and targeted treatment of cancer. Int J Mol Sci. 2017;18:878.
Saman S, Stagno MJ, Warmann SW, Malek NP, Plentz RR, Schmid E. Biomarkers Apo10 and TKTL1: Epitope-detection in monocytes (EDIM) as a new diagnostic approach for cholangiocellular, pancreatic and colorectal carcinoma. Cancer Biomark. 2020;27:129–37.
pubmed: 31771043
doi: 10.3233/CBM-190414
Bentz S, Cee A, Endlicher E, Wojtal KA, Naami A, Pesch T, et al. Hypoxia induces the expression of transketolase-like 1 in human colorectal cancer. Digestion. 2013;88:182–92.
pubmed: 24193262
doi: 10.1159/000355015
Foldi M, Stickeler E, Bau L, Kretz O, Watermann D, Gitsch G, et al. Transketolase protein TKTL1 overexpression: a potential biomarker and therapeutic target in breast cancer. Oncol Rep. 2007;17:841–5.
pubmed: 17342325
Frohlich E, Fink I, Wahl R. Is transketolase like 1 a target for the treatment of differentiated thyroid carcinoma? A study on thyroid cancer cell lines. Invest N. Drugs. 2009;27:297–303.
doi: 10.1007/s10637-008-9174-8
Kohrenhagen N, Voelker HU, Schmidt M, Kapp M, Krockenberger M, Frambach T, et al. Expression of transketolase-like 1 (TKTL1) and p-Akt correlates with the progression of cervical neoplasia. J Obstet Gynaecol Res. 2008;34:293–300.
pubmed: 18686341
doi: 10.1111/j.1447-0756.2008.00749.x
Krockenberger M, Honig A, Rieger L, Coy JF, Sutterlin M, Kapp M, et al. Transketolase-like 1 expression correlates with subtypes of ovarian cancer and the presence of distant metastases. Int J Gynecol Cancer. 2007;17:101–6.
pubmed: 17291239
doi: 10.1111/j.1525-1438.2007.00799.x
Langbein S, Zerilli M, Zur Hausen A, Staiger W, Rensch-Boschert K, Lukan N, et al. Expression of transketolase TKTL1 predicts colon and urothelial cancer patient survival: Warburg effect reinterpreted. Br J Cancer. 2006;94:578–85.
pubmed: 16465194
pmcid: 2361175
doi: 10.1038/sj.bjc.6602962
Schmidt M, Kammerer U, Segerer S, Cramer A, Kohrenhagen N, Dietl J, et al. Glucose metabolism and angiogenesis in granulosa cell tumors of the ovary: activation of Akt, expression of M2PK, TKTL1 and VEGF. Eur J Obstet Gynecol Reprod Biol. 2008;139:72–8.
pubmed: 18394773
doi: 10.1016/j.ejogrb.2008.02.009
Schultz H, Kahler D, Branscheid D, Vollmer E, Zabel P, Goldmann T. TKTL1 is overexpressed in a large portion of non-small cell lung cancer specimens. Diagn Pathol. 2008;3:35.
pubmed: 18700018
pmcid: 2526982
doi: 10.1186/1746-1596-3-35
Schwaab J, Horisberger K, Strobel P, Bohn B, Gencer D, Kahler G, et al. Expression of Transketolase like gene 1 (TKTL1) predicts disease-free survival in patients with locally advanced rectal cancer receiving neoadjuvant chemoradiotherapy. BMC Cancer. 2011;11:363.
pubmed: 21854597
pmcid: 3176245
doi: 10.1186/1471-2407-11-363
Staiger WI, Coy JF, Grobholz R, Hofheinz RD, Lukan N, Post S, et al. Expression of the mutated transketolase TKTL1, a molecular marker in gastric cancer. Oncol Rep. 2006;16:657–61.
pubmed: 16969476
Sun W, Liu Y, Glazer CA, Shao C, Bhan S, Demokan S, et al. TKTL1 is activated by promoter hypomethylation and contributes to head and neck squamous cell carcinoma carcinogenesis through increased aerobic glycolysis and HIF1alpha stabilization. Clin Cancer Res. 2010;16:857–66.
pubmed: 20103683
pmcid: 2824550
doi: 10.1158/1078-0432.CCR-09-2604
Volker HU, Scheich M, Schmausser B, Kammerer U, Eck M. Overexpression of transketolase TKTL1 is associated with shorter survival in laryngeal squamous cell carcinomas. Eur Arch Otorhinolaryngol. 2007;264:1431–6.
pubmed: 17639446
doi: 10.1007/s00405-007-0394-x
Zerilli M, Amato MC, Martorana A, Cabibi D, Coy JF, Cappello F, et al. Increased expression of transketolase-like-1 in papillary thyroid carcinomas smaller than 1.5 cm in diameter is associated with lymph-node metastases. Cancer. 2008;113:936–44.
pubmed: 18615628
doi: 10.1002/cncr.23683
Zhang S, Yue JX, Yang JH, Cai PC, Kong WJ. Overexpression of transketolase protein TKTL1 is associated with occurrence and progression in nasopharyngeal carcinoma: a potential therapeutic target in nasopharyngeal carcinoma. Cancer Biol Ther. 2008;7:517–22.
pubmed: 18296915
doi: 10.4161/cbt.7.4.5479
Xu X, Zur Hausen A, Coy JF, Lochelt M. Transketolase-like protein 1 (TKTL1) is required for rapid cell growth and full viability of human tumor cells. Int J Cancer. 2009;124:1330–7.
pubmed: 19065656
doi: 10.1002/ijc.24078
Los M, Neubuser D, Coy JF, Mozoluk M, Poustka A, Schulze-Osthoff K. Functional characterization of DNase X, a novel endonuclease expressed in muscle cells. Biochemistry. 2000;39:7365–73.
pubmed: 10858283
doi: 10.1021/bi000158w
Grimm M, Cetindis M, Lehmann M, Biegner T, Munz A, Teriete P, et al. Apoptosis resistance-related ABCB5 and DNaseX (Apo10) expression in oral carcinogenesis. Acta Odontol Scand. 2015;73:336–42.
pubmed: 25234444
doi: 10.3109/00016357.2014.961029
Todenhofer T, Hennenlotter J, Keller G, Neumann T, Stenzl A, Bedke J. Effect of radical prostatectomy on levels of cancer related epitopes in circulating macrophages of patients with clinically localized prostate cancer. Prostate. 2017;77:1251–8.
pubmed: 28726251
doi: 10.1002/pros.23384
Lammie G, Cheung N, Gerald W, Rosenblum M, Cordoncardo C. Ganglioside gd(2) expression in the human nervous-system and in neuroblastomas - an immunohistochemical study. Int J Oncol. 1993;3:909–15.
pubmed: 21573452
Schulz G, Cheresh DA, Varki NM, Yu A, Staffileno LK, Reisfeld RA. Detection of ganglioside GD2 in tumor tissues and sera of neuroblastoma patients. Cancer Res. 1984;44:5914–20.
pubmed: 6498849
Grant SC, Kostakoglu L, Kris MG, Yeh SD, Larson SM, Finn RD, et al. Targeting of small-cell lung cancer using the anti-GD2 ganglioside monoclonal antibody 3F8: a pilot trial. Eur J Nucl Med. 1996;23:145–9.
pubmed: 8925848
doi: 10.1007/BF01731837
Chang HR, Cordon-Cardo C, Houghton AN, Cheung NK, Brennan MF. Expression of disialogangliosides GD2 and GD3 on human soft tissue sarcomas. Cancer. 1992;70:633–8.
pubmed: 1623478
doi: 10.1002/1097-0142(19920801)70:3<633::AID-CNCR2820700315>3.0.CO;2-F
Hakomori S. Glycosylation defining cancer malignancy: new wine in an old bottle. Proc Natl Acad Sci USA 2002;99:10231–3.
pubmed: 12149519
pmcid: 124893
doi: 10.1073/pnas.172380699
Terzic T, Cordeau M, Herblot S, Teira P, Cournoyer S, Beaunoyer M, et al. Expression of disialoganglioside (GD2) in neuroblastic tumors: a prognostic value for patients treated with anti-GD2 immunotherapy. Pediatr Dev Pathol. 2018;21:355–62.
pubmed: 29067879
doi: 10.1177/1093526617723972
Yu AL, Gilman AL, Ozkaynak MF, London WB, Kreissman SG, Chen HX, et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N. Engl J Med. 2010;363:1324–34.
pubmed: 20879881
pmcid: 3086629
doi: 10.1056/NEJMoa0911123
Schmid E, Stagno MJ, Yan J, Stournaras C, Lang F, Fuchs J, et al. Store-operated Ca(2+) entry in rhabdomyosarcoma cells. Biochem Biophys Res Commun. 2016;477:129–36.
pubmed: 27291153
doi: 10.1016/j.bbrc.2016.06.032
Ziegler-Heitbrock L. The CD14+ CD16+ blood monocytes: their role in infection and inflammation. J Leukoc Biol. 2007;81:584–92.
pubmed: 17135573
doi: 10.1189/jlb.0806510
van Ravenswaay Claasen HH, Kluin PM, Fleuren GJ. Tumor infiltrating cells in human cancer. On the possible role of CD16+ macrophages in antitumor cytotoxicity. Lab Invest. 1992;67:166–74.
pubmed: 1501443
Diaz-Moralli S, Tarrado-Castellarnau M, Alenda C, Castells A, Cascante M. Transketolase-like 1 expression is modulated during colorectal cancer progression and metastasis formation. PLoS ONE. 2011;6:e25323.
pubmed: 21980427
pmcid: 3181277
doi: 10.1371/journal.pone.0025323
Barden A, Phillips M, Hill LM, Fletcher EM, Mas E, Loh PS, et al. Antiemetic doses of dexamethasone and their effects on immune cell populations and plasma mediators of inflammation resolution in healthy volunteers. Prostaglandins Leukot Ess Fat Acids. 2018;139:31–9.
doi: 10.1016/j.plefa.2018.11.004
Jayachandran A, Lo PH, Chueh AC, Prithviraj P, Molania R, Davalos-Salas M, et al. Transketolase-like 1 ectopic expression is associated with DNA hypomethylation and induces the Warburg effect in melanoma cells. BMC Cancer. 2016;16:134.
pubmed: 26907172
pmcid: 4763451
doi: 10.1186/s12885-016-2185-5
Shi Z, Tang Y, Li K, Fan Q. TKTL1 expression and its downregulation is implicated in cell proliferation inhibition and cell cycle arrest in esophageal squamous cell carcinoma. Tumour Biol. 2015;36:8519–29.
pubmed: 26032094
doi: 10.1007/s13277-015-3608-7
Lipinski M, Braham K, Philip I, Wiels J, Philip T, Dellagi K, et al. Phenotypic characterization of Ewing sarcoma cell lines with monoclonal antibodies. J Cell Biochem. 1986;31:289–96.
pubmed: 3760036
doi: 10.1002/jcb.240310406
Heiner JP, Miraldi F, Kallick S, Makley J, Neely J, Smith-Mensah WH, et al. Localization of GD2-specific monoclonal antibody 3F8 in human osteosarcoma. Cancer Res. 1987;47:5377–81.
pubmed: 3115567
Dobrenkov K, Cheung NK. GD2-targeted immunotherapy and radioimmunotherapy. Semin Oncol. 2014;41:589–612.
pubmed: 25440605
pmcid: 4254523
doi: 10.1053/j.seminoncol.2014.07.003
Feyen O, Coy JF, Prasad V, Schierl R, Saenger J, Baum RP. EDIM-TKTL1 blood test: a noninvasive method to detect upregulated glucose metabolism in patients with malignancies. Future Oncol. 2012;8:1349–59.
pubmed: 23130932
doi: 10.2217/fon.12.98