Cytochrome P450 oxidase 2J inhibition suppresses choroidal neovascularization in mice.


Journal

Metabolism: clinical and experimental
ISSN: 1532-8600
Titre abrégé: Metabolism
Pays: United States
ID NLM: 0375267

Informations de publication

Date de publication:
09 2022
Historique:
received: 04 04 2022
revised: 07 07 2022
accepted: 09 07 2022
pubmed: 23 7 2022
medline: 16 8 2022
entrez: 22 7 2022
Statut: ppublish

Résumé

Choroidal neovascularization (CNV) in age-related macular degeneration (AMD) leads to blindness. It has been widely reported that increased intake of ω-3 long-chain polyunsaturated fatty acids (LCPUFA) diets reduce CNV. Of the three major pathways metabolizing ω-3 (and ω-6 LCPUFA), the cyclooxygenase and lipoxygenase pathways generally produce pro-angiogenic metabolites from ω-6 LCPUFA and anti-angiogenic ones from ω-3 LCPUFA. Howevehr, cytochrome P450 oxidase (CPY) 2C produces pro-angiogenic metabolites from both ω-6 and ω-3 LCPUFA. The effects of CYP2J2 products on ocular neovascularization are still unknown. Understanding how each metabolic pathway affects the protective effect of ω-3 LCPUFA on retinal neovascularization may lead to therapeutic interventions. To investigate the effects of LCPUFA metabolites through CYP2J2 pathway and CYP2J2 regulation on CNV both in vivo and ex vivo. The impact of CYP2J2 overexpression and inhibition on neovascularization in the laser-induced CNV mouse model was assessed. The plasma levels of CYP2J2 metabolites were measured by liquid chromatography and tandem mass spectroscopy. The choroidal explant sprouting assay was used to investigate the effects of CYP2J2 inhibition and specific LCPUFA CYP2J2 metabolites on angiogenesis ex vivo. CNV was exacerbated in Tie2-Cre CYP2J2-overexpressing mice and was associated with increased levels of plasma docosahexaenoic acids. Inhibiting CYP2J2 activity with flunarizine decreased CNV in both ω-6 and ω-3 LCPUFA-fed wild-type mice. In Tie2-Cre CYP2J2-overexpressing mice, flunarizine suppressed CNV by 33 % and 36 % in ω-6, ω-3 LCPUFA diets, respectively, and reduced plasma levels of CYP2J2 metabolites. The pro-angiogenic role of CYP2J2 was corroborated in the choroidal explant sprouting assay. Flunarizine attenuated ex vivo choroidal sprouting, and 19,20-EDP, a ω-3 LCPUFA CYP2J2 metabolite, increased sprouting. The combined inhibition of CYP2J2 with flunarizine and CYP2C8 with montelukast further enhanced CNV suppression via tumor necrosis factor-α suppression. CYP2J2 inhibition augmented the inhibitory effect of ω-3 LCPUFA on CNV. Flunarizine suppressed pathological choroidal angiogenesis, and co-treatment with montelukast inhibiting CYP2C8 further enhanced the effect. CYP2 inhibition might be a viable approach to suppress CNV in AMD.

Identifiants

pubmed: 35868524
pii: S0026-0495(22)00144-5
doi: 10.1016/j.metabol.2022.155266
pmc: PMC9535696
mid: NIHMS1834402
pii:
doi:

Substances chimiques

19,20-epoxydocosapentaenoic acid 0
Fatty Acids, Omega-3 0
Fatty Acids, Unsaturated 0
Docosahexaenoic Acids 25167-62-8
Cytochrome P-450 CYP2C8 EC 1.14.14.1
NADPH-Ferrihemoprotein Reductase EC 1.6.2.4
Flunarizine R7PLA2DM0J

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

155266

Subventions

Organisme : NEI NIH HHS
ID : R01 EY017017
Pays : United States
Organisme : NICHD NIH HHS
ID : P50 HD105351
Pays : United States
Organisme : NICHD NIH HHS
ID : U54 HD090255
Pays : United States
Organisme : NEI NIH HHS
ID : R01 EY030904
Pays : United States
Organisme : NEI NIH HHS
ID : R01 EY032492
Pays : United States

Informations de copyright

Copyright © 2022 Elsevier Inc. All rights reserved.

Références

Lipids Health Dis. 2018 Jan 4;17(1):3
pubmed: 29301530
PLoS One. 2012;7(4):e35102
pubmed: 22496896
Ophthalmology. 2017 Dec;124(12):1753-1763
pubmed: 28712657
Graefes Arch Clin Exp Ophthalmol. 2021 Aug;259(8):2181-2192
pubmed: 33528645
PLoS One. 2013 Jul 26;8(7):e69552
pubmed: 23922736
PLoS One. 2015 Jul 10;10(7):e0132643
pubmed: 26161975
Biochim Biophys Acta Mol Basis Dis. 2022 Apr 1;1868(4):166340
pubmed: 35032596
J Vis Exp. 2020 Aug 6;(162):
pubmed: 32831307
FASEB J. 2011 Oct;25(10):3436-47
pubmed: 21697548
J Lipid Res. 2020 Feb;61(2):143-158
pubmed: 31818877
Arch Ophthalmol. 2011 Jul;129(7):921-9
pubmed: 21402976
Oxid Med Cell Longev. 2019 Jun 18;2019:8107265
pubmed: 31316721
Korean J Ophthalmol. 2017 Aug;31(4):360-365
pubmed: 28752700
Sci Transl Med. 2011 Feb 9;3(69):69ra12
pubmed: 21307302
Graefes Arch Clin Exp Ophthalmol. 2021 Aug;259(8):2085-2093
pubmed: 33415353
Korean J Ophthalmol. 2020 Feb;34(1):11-18
pubmed: 32037745
Ophthalmologe. 2021 Dec;118(12):1255-1263
pubmed: 33320292
FASEB J. 2010 Oct;24(10):3770-81
pubmed: 20495177
Prog Retin Eye Res. 2021 May;82:100906
pubmed: 33022379
Cell Biochem Biophys. 2021 Jun;79(2):289-299
pubmed: 33811614
Ophthalmologe. 2016 Aug;113(8):668-74
pubmed: 26920612
Am J Clin Nutr. 2017 Jul;106(1):16-26
pubmed: 28515072
Am J Respir Cell Mol Biol. 1995 Mar;12(3):260-7
pubmed: 7873191
Curr Nutr Rep. 2019 Jun;8(2):53-65
pubmed: 30949921
Lancet. 2018 Sep 29;392(10153):1147-1159
pubmed: 30303083
Arterioscler Thromb Vasc Biol. 2014 Mar;34(3):581-6
pubmed: 24458713
J Control Release. 2020 Apr 10;320:442-456
pubmed: 31981659
BMC Med Genomics. 2020 Aug 26;13(1):120
pubmed: 32843070
Mol Vis. 2021 Nov 19;27:622-631
pubmed: 34924742
Eye Vis (Lond). 2016 Dec 22;3:34
pubmed: 28032115
Angiogenesis. 2020 Aug;23(3):385-394
pubmed: 32140799
Proc Nutr Soc. 2020 Jun 22;:1-13
pubmed: 32624016
Biomed Pharmacother. 2020 Jan;121:109606
pubmed: 31743875
Physiol Rev. 2002 Jan;82(1):131-85
pubmed: 11773611
Arch Ophthalmol. 2009 Jan;127(1):110-2
pubmed: 19139352
Invest Ophthalmol Vis Sci. 2017 Oct 1;58(12):5065-5075
pubmed: 28980001
EBioMedicine. 2016 Nov;13:201-211
pubmed: 27720395
Lancet Glob Health. 2014 Feb;2(2):e106-16
pubmed: 25104651
Oncotarget. 2016 Jul 12;7(28):43324-43336
pubmed: 27270316
Prostaglandins Other Lipid Mediat. 2013 Dec;107:56-63
pubmed: 23474289
Arterioscler Thromb Vasc Biol. 2016 Sep;36(9):1919-27
pubmed: 27417579
Diabetes. 2010 Jul;59(7):1780-8
pubmed: 20424229
Clin Exp Ophthalmol. 2019 Jan;47(1):106-127
pubmed: 29927057
J Ophthalmol. 2017;2017:7194927
pubmed: 28660080
Eye (Lond). 2020 Oct;34(10):1888-1896
pubmed: 31980748
Ophthalmol Retina. 2019 Apr;3(4):316-325
pubmed: 31014683
Drug Metab Dispos. 2015 Aug;43(8):1169-80
pubmed: 25994032
Am J Clin Nutr. 2009 Dec;90(6):1601-7
pubmed: 19812176
Sci Rep. 2021 May 6;11(1):9677
pubmed: 33958662
Nat Med. 2007 Jul;13(7):868-873
pubmed: 17589522
Graefes Arch Clin Exp Ophthalmol. 2021 Sep;259(9):2687-2694
pubmed: 33710471
Nat Commun. 2020 Feb 4;11(1):694
pubmed: 32019921
Diabetologia. 2021 Jan;64(1):70-82
pubmed: 33099660
J Biol Chem. 2018 Mar 2;293(9):3281-3292
pubmed: 29298899
Biochim Biophys Acta. 2015 Apr;1851(4):308-30
pubmed: 25316652
Invest Ophthalmol Vis Sci. 2016 Dec 1;57(15):6911-6918
pubmed: 28027565
Blood. 2008 Jun 15;111(12):5581-91
pubmed: 18408167
Int Ophthalmol. 2019 Dec;39(12):2975-2983
pubmed: 31313070
Bioengineered. 2021 Dec;12(2):10878-10890
pubmed: 34666595
Exp Mol Med. 2021 Nov;53(11):1748-1758
pubmed: 34799683

Auteurs

Yan Gong (Y)

Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.

Yohei Tomita (Y)

Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.

Matthew L Edin (ML)

Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.

Anli Ren (A)

Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China.

Minji Ko (M)

Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.

Jay Yang (J)

Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.

Edward Bull (E)

Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.

Darryl C Zeldin (DC)

Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.

Ann Hellström (A)

Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Göteborg, Sweden.

Zhongjie Fu (Z)

Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.

Lois E H Smith (LEH)

Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA. Electronic address: lois.smith@childrens.harvard.edu.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH