Double bias correction for high-dimensional sparse additive hazards regression with covariate measurement errors.

Bias correction Confidence interval Error-in-variable Estimating equation High dimensions Survival analysis

Journal

Lifetime data analysis
ISSN: 1572-9249
Titre abrégé: Lifetime Data Anal
Pays: United States
ID NLM: 9516348

Informations de publication

Date de publication:
01 2023
Historique:
received: 18 09 2021
accepted: 06 07 2022
pubmed: 23 7 2022
medline: 24 1 2023
entrez: 22 7 2022
Statut: ppublish

Résumé

We propose an inferential procedure for additive hazards regression with high-dimensional survival data, where the covariates are prone to measurement errors. We develop a double bias correction method by first correcting the bias arising from measurement errors in covariates through an estimating function for the regression parameter. By adopting the convex relaxation technique, a regularized estimator for the regression parameter is obtained by elaborately designing a feasible loss based on the estimating function, which is solved via linear programming. Using the Neyman orthogonality, we propose an asymptotically unbiased estimator which further corrects the bias caused by the convex relaxation and regularization. We derive the convergence rate of the proposed estimator and establish the asymptotic normality for the low-dimensional parameter estimator and the linear combination thereof, accompanied with a consistent estimator for the variance. Numerical experiments are carried out on both simulated and real datasets to demonstrate the promising performance of the proposed double bias correction method.

Identifiants

pubmed: 35869178
doi: 10.1007/s10985-022-09568-2
pii: 10.1007/s10985-022-09568-2
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

115-141

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Belloni A, Chernozhukov V, Kaul A (2017) Confidence bands for coefficients in high dimensional linear models with error-in-variables. arXiv preprint, arXiv:1703.00469 . https://doi.org/10.48550/arXiv.1703.00469
Bühlmann P, van de Geer S (2011) Statistics for High-dimensional Data: Methods, Theory and Applications. Springer, New York
doi: 10.1007/978-3-642-20192-9
Candès EJ, Tao T (2007) The Dantzig selector: Statistical estimation when [Formula: see text] is much larger than [Formula: see text]. Ann Stat 35(6):2313–2351. https://doi.org/10.1214/009053606000001523
doi: 10.1214/009053606000001523
Carroll RJ, Ruppert D, Stefanski LA, Crainiceanu CM (2006) Measurement Error in Nonlinear Models: A Modern Perspective. Chapman and Hall Press, London
doi: 10.1201/9781420010138
Chernozhukov V, Chetverikov D, Demirer M, Duflo E, Hansen C, Newey WK, Robins J (2018) Double/debiased machine learning for treatment and structural parameters. Econom J 21:1–68. https://doi.org/10.1111/ectj.12097
doi: 10.1111/ectj.12097
Cox DR (1972) Regression models and life-tables (with discussion). J Roy Stat Soc B 34(2):187–220. https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
doi: 10.1111/j.2517-6161.1972.tb00899.x
Datta A, Zou H (2017) CoCoLasso for high-dimensional error-in-variables regression. Ann Stat 45(6):2400–2426. https://doi.org/10.1214/16-AOS1527
doi: 10.1214/16-AOS1527
Donoho D, Gavish M (2014) Minimax risk of matrix denoising by singular value thresholding. Ann Stat 42(6):2413–2440. https://doi.org/10.1214/14-AOS1257
doi: 10.1214/14-AOS1257
Fang EX, Ning Y, Liu H (2017) Testing and confidence intervals for high dimensional proportional hazards models. J Roy Stat Soc B 79(5):1415–1437. https://doi.org/10.1111/rssb.12224
doi: 10.1111/rssb.12224
Guo Z, Renaux C, Bühlmann P, Cai TT (2021) Group inference in high dimensions with applications to hierarchical testing. Electron J Stat 15(2):6633–6676. https://doi.org/10.1214/21-EJS1955
doi: 10.1214/21-EJS1955
Huang J, Sun T, Ying Z, Yu Y, Zhang C-H (2013) Oracle inequalities for the Lasso in the Cox model. Ann Stat 41(3):1142–1165. https://doi.org/10.1214/13-AOS1098
doi: 10.1214/13-AOS1098
Huang Y, Wang CY (2000) Cox regression with accurate covariates unascertainable: A nonparametric-correction approach. J Am Stat Assoc 95(452):1209–1219. https://doi.org/10.1080/01621459.2000.10474321
doi: 10.1080/01621459.2000.10474321
Javanmard A, Montanari A (2014) Confidence intervals and hypothesis testing for high-dimensional regression. J Mach Learn Res 15(1):2869–2909. https://doi.org/10.5555/2627435.2697057
doi: 10.5555/2627435.2697057
Johnson BA, Lin DY, Zeng D (2008) Penalized estimating functions and variable selection in semiparametric regression models. J Am Stat Assoc 103(482):672–680. https://doi.org/10.1198/016214508000000184
doi: 10.1198/016214508000000184
Kulich M, Lin DY (2000) Additive hazards regression with covariate measurement error. J Am Stat Assoc 95(449):238–248. https://doi.org/10.1080/01621459.2000.10473917
doi: 10.1080/01621459.2000.10473917
Lee JD, Sun DL, Sun Y, Taylor JE (2016) Exact post-selection inference with application to the Lasso. Ann Stat 44(3):907–927. https://doi.org/10.1214/15-AOS1371
doi: 10.1214/15-AOS1371
Lin DY, Ying Z (1994) Semiparametric analysis of the additive risk model. Biometrika 81(1):61–71. https://doi.org/10.1093/biomet/81.1.61
doi: 10.1093/biomet/81.1.61
Lin W, Lv J (2013) High-dimensional sparse additive hazards regression. J Am Stat Assoc 108(501):247–264. https://doi.org/10.1080/01621459.2012.746068
doi: 10.1080/01621459.2012.746068
Lockhart R, Taylor J, Tibshirani RJ, Tibshirani R (2014) A significance test for the Lasso. Ann Stat 42(2):413–468. https://doi.org/10.1214/13-AOS1175
doi: 10.1214/13-AOS1175
Loh PL, Wainwright MJ (2012) High-dimensional regression with noisy and missing data: Provable guarantees with non-convexity. Ann Stat 40(3):1637–1664. https://doi.org/10.1214/12-AOS1018
doi: 10.1214/12-AOS1018
Meinshausen N, Meier L, Bühlmann P (2009) P-values for high-dimensional regression. J Am Stat Assoc 104(488):1671–1681. https://doi.org/10.1198/jasa.2009.tm08647
doi: 10.1198/jasa.2009.tm08647
Mitra R, Zhang C-H (2016) The benefit of group sparsity in group inference with de-biased scaled group lasso. Electron J Stat 10(2):1829–1873. https://doi.org/10.1214/16-EJS1120
doi: 10.1214/16-EJS1120
Nakamura T (1992) Proportional hazards model with covariates subject to measurement error. Biom 48(3):829–838. https://doi.org/10.2307/2532348
doi: 10.2307/2532348
Newey WK (1994) The asymptotic variance of semiparametric estimators. Econom 62(6):1349–1382. https://doi.org/10.2307/2951752
doi: 10.2307/2951752
Neyman J (1959) Optimal asymptotic tests of composite statistical hypotheses. In: Grenander U (ed) Probability and Statistics. John Wiley & Sons, New York, pp 416–444
Ning Y, Liu H (2017) A general theory of hypothesis tests and confidence regions for sparse high dimensional models. Ann Stat 45(1):158–195. https://doi.org/10.1214/16-AOS1448
doi: 10.1214/16-AOS1448
Rosenbaum M, Tsybakov AB (2010) Sparse recovery under matrix uncertainty. Ann Stat 38(5):2620–2651. https://doi.org/10.1214/10-AOS793
doi: 10.1214/10-AOS793
Sørensen Ø, Hellton KH, Frigessi A, Thoresen M (2018) Covariate selection in high-dimensional generalized linear models with measurement error. J Comput Graph Stat 27(4):739–749. https://doi.org/10.1080/10618600.2018.1425626
doi: 10.1080/10618600.2018.1425626
Stefanski LA (1989) Unbiased estimation of a nonlinear function a normal mean with application to measurement error models. Commun Stat-Theory Methods 18(12):4335–4358. https://doi.org/10.1080/03610928908830159
doi: 10.1080/03610928908830159
Tibshirani R (1996) Regression shrinkage and selection via the lasso. J Roy Stat Soc B 58(1):267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
doi: 10.1111/j.2517-6161.1996.tb02080.x
van de Geer S, Bühlmann P, Ritov YA, Dezeure R (2014) On asymptotically optimal confidence regions and tests for high-dimensional models. Ann Stat 42(3):1166–1202. https://doi.org/10.1214/14-AOS1221
doi: 10.1214/14-AOS1221
Wainwright MJ (2019) High Dimensional Statistics: A Non-asymptotic Viewpoint. Cambridge University Press, New York
doi: 10.1017/9781108627771
Wang H, Stefanski LA, Zhu Z (2012) Corrected-loss estimation for quantile regression with covariate measurement errors. Biom 99(2):405–421. https://doi.org/10.1093/biomet/ass005
doi: 10.1093/biomet/ass005
Wasserman L, Roeder K (2009) High dimensional variable selection. Ann Stat 37(5A):2178–2201. https://doi.org/10.1214/08-AOS646
doi: 10.1214/08-AOS646
Yan Y (2014) Statistical Methods on Survival Data with Measurement Error. PhD Thesis, University of Waterloo. http://hdl.handle.net/10012/8699
Yan Y, Yi GY (2016) Analysis of error-prone survival data under additive hazards models: Measurement error effects and adjustments. Lifetime Data Anal 22:321–342. https://doi.org/10.1007/s10985-015-9340-1
doi: 10.1007/s10985-015-9340-1
Yu Y, Bradic J, Samworth RJ (2021) Confidence intervals for high-dimensional Cox models. Stat Sin 31:243–267. https://doi.org/10.5705/ss.202018.0247
doi: 10.5705/ss.202018.0247
Zhang C-H, Zhang SS (2014) Confidence intervals for low dimensional parameters in high dimensional linear models. J Roy Stat Soc B 76(1):217–242. https://doi.org/10.1111/rssb.12026
doi: 10.1111/rssb.12026

Auteurs

Xiaobo Wang (X)

School of Mathematics and Statistics, Wuhan University, Wuhan, Hubei, 430072, China.

Jiayu Huang (J)

School of Mathematics and Statistics, Wuhan University, Wuhan, Hubei, 430072, China.

Guosheng Yin (G)

Department of Statistics and Actuarial Science, University of Hong Kong, Pokfulam Road, Hong Kong, China.

Jian Huang (J)

Department of Statistics and Actuarial Science, University of Iowa, Iowa City, IA, 52242-1419, U.S.A.

Yuanshan Wu (Y)

School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan, Hubei, 430073, China. wu@zuel.edu.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH