Limited generalizability of single deep neural network for surgical instrument segmentation in different surgical environments.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
22 07 2022
Historique:
received: 09 09 2021
accepted: 18 07 2022
entrez: 22 7 2022
pubmed: 23 7 2022
medline: 27 7 2022
Statut: epublish

Résumé

Clarifying the generalizability of deep-learning-based surgical-instrument segmentation networks in diverse surgical environments is important in recognizing the challenges of overfitting in surgical-device development. This study comprehensively evaluated deep neural network generalizability for surgical instrument segmentation using 5238 images randomly extracted from 128 intraoperative videos. The video dataset contained 112 laparoscopic colorectal resection, 5 laparoscopic distal gastrectomy, 5 laparoscopic cholecystectomy, and 6 laparoscopic partial hepatectomy cases. Deep-learning-based surgical-instrument segmentation was performed for test sets with (1) the same conditions as the training set; (2) the same recognition target surgical instrument and surgery type but different laparoscopic recording systems; (3) the same laparoscopic recording system and surgery type but slightly different recognition target laparoscopic surgical forceps; (4) the same laparoscopic recording system and recognition target surgical instrument but different surgery types. The mean average precision and mean intersection over union for test sets 1, 2, 3, and 4 were 0.941 and 0.887, 0.866 and 0.671, 0.772 and 0.676, and 0.588 and 0.395, respectively. Therefore, the recognition accuracy decreased even under slightly different conditions. The results of this study reveal the limited generalizability of deep neural networks in the field of surgical artificial intelligence and caution against deep-learning-based biased datasets and models.Trial Registration Number: 2020-315, date of registration: October 5, 2020.

Identifiants

pubmed: 35869249
doi: 10.1038/s41598-022-16923-8
pii: 10.1038/s41598-022-16923-8
pmc: PMC9307578
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

12575

Informations de copyright

© 2022. The Author(s).

Références

Ann Surg. 2018 Jul;268(1):70-76
pubmed: 29389679
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:5735-5738
pubmed: 31947155
IEEE Trans Pattern Anal Mach Intell. 2020 Feb;42(2):386-397
pubmed: 29994331
J Clin Med. 2020 Jun 23;9(6):
pubmed: 32585953
JAMA Netw Open. 2019 Oct 2;2(10):e1913436
pubmed: 31617929
Ann Intern Med. 2018 Sep 18;169(6):357-366
pubmed: 30105375
Surg Endosc. 2021 Jul;35(7):4008-4015
pubmed: 32720177
Am J Surg. 2005 Jul;190(1):107-13
pubmed: 15972181
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:7205-7211
pubmed: 31947497
Surg J (N Y). 2017 Nov 09;3(4):e163-e166
pubmed: 29134202
J Surg Educ. 2019 Nov - Dec;76(6):1629-1639
pubmed: 31272846
Int J Surg. 2014 Dec;12(12):1495-9
pubmed: 25046131
Int J Comput Assist Radiol Surg. 2020 Aug;15(8):1335-1345
pubmed: 32577985
Nat Biomed Eng. 2017 Sep;1(9):691-696
pubmed: 31015666
Med Image Anal. 2020 Dec;66:101714
pubmed: 33007638
Med Phys. 2018 Mar;45(3):1150-1158
pubmed: 29356028
Acad Med. 2012 Oct;87(10):1401-7
pubmed: 22914526
Cancer Commun (Lond). 2018 Sep 25;38(1):59
pubmed: 30253801
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1658-1661
pubmed: 33018314
IEEE Trans Med Imaging. 2018 May;37(5):1276-1287
pubmed: 29727290
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651
pubmed: 27244717
PLoS Med. 2018 Nov 6;15(11):e1002683
pubmed: 30399157
J Image Guid Surg. 1995;1(6):308-25
pubmed: 9080352
Ann Surg. 2019 Sep;270(3):414-421
pubmed: 31274652
Br J Surg. 1997 Feb;84(2):273-8
pubmed: 9052454
EBioMedicine. 2019 May;43:107-113
pubmed: 31101596
Healthc Technol Lett. 2019 Nov 26;6(6):275-279
pubmed: 32038871

Auteurs

Daichi Kitaguchi (D)

Surgical Device Innovation Office, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
Department of Colorectal Surgery, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.

Toru Fujino (T)

Surgical Device Innovation Office, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.

Nobuyoshi Takeshita (N)

Surgical Device Innovation Office, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
Department of Colorectal Surgery, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.

Hiro Hasegawa (H)

Surgical Device Innovation Office, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
Department of Colorectal Surgery, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.

Kensaku Mori (K)

Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan.

Masaaki Ito (M)

Surgical Device Innovation Office, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan. maito@east.ncc.go.jp.
Department of Colorectal Surgery, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan. maito@east.ncc.go.jp.

Articles similaires

Humans Artificial Intelligence COVID-19 SARS-CoV-2 Pandemics
Humans Algorithms Software Artificial Intelligence Computer Simulation

Classifications MeSH