Age-related decline in circulating IGF-1 associates with impaired neurovascular coupling responses in older adults.


Journal

GeroScience
ISSN: 2509-2723
Titre abrégé: Geroscience
Pays: Switzerland
ID NLM: 101686284

Informations de publication

Date de publication:
12 2022
Historique:
received: 24 04 2022
accepted: 09 07 2022
pubmed: 23 7 2022
medline: 23 12 2022
entrez: 22 7 2022
Statut: ppublish

Résumé

Impairment of moment-to-moment adjustment of cerebral blood flow (CBF) to the increased oxygen and energy requirements of active brain regions via neurovascular coupling (NVC) contributes to the genesis of age-related cognitive impairment. Aging is associated with marked deficiency in the vasoprotective hormone insulin-like growth factor-1 (IGF-1). Preclinical studies on animal models of aging suggest that circulating IGF-1 deficiency is causally linked to impairment of NVC responses. The present study was designed to test the hypotheses that decreases in circulating IGF-1 levels in older adults also predict the magnitude of age-related decline of NVC responses. In a single-center cross-sectional study, we enrolled healthy young (n = 31, 11 female, 20 male, mean age: 28.4 + / - 4.2 years) and aged volunteers (n = 32, 18 female, 14 male, mean age: 67.9 + / - 4.1 years). Serum IGF-1 level, basal CBF (phase contrast magnetic resonance imaging (MRI)), and NVC responses during the trail making task (with transcranial Doppler sonography) were assessed. We found that circulating IGF-1 levels were significantly decreased with age and associated with decreased basal CBF. Age-related decline in IGF-1 levels predicted the magnitude of age-related decline in NVC responses. In conclusion, our study provides additional evidence in support of the concept that age-related circulating IGF-1 deficiency contributes to neurovascular aging, impairing CBF and functional hyperemia in older adults.

Identifiants

pubmed: 35869380
doi: 10.1007/s11357-022-00623-2
pii: 10.1007/s11357-022-00623-2
pmc: PMC9768079
doi:

Substances chimiques

Insulin-Like Growth Factor I 67763-96-6

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

2771-2783

Subventions

Organisme : NCI NIH HHS
ID : R01 CA255840
Pays : United States
Organisme : NIA NIH HHS
ID : K01 AG073614
Pays : United States
Organisme : NIGMS NIH HHS
ID : P20 GM103447
Pays : United States
Organisme : NIA NIH HHS
ID : RF1 AG072295
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS100782
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG055395
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG068295
Pays : United States
Organisme : NIGMS NIH HHS
ID : P20 GM125528
Pays : United States

Informations de copyright

© 2022. The Author(s).

Références

Tarantini S, et al. Impaired neurovascular coupling in aging and Alzheimer’s disease: contribution of astrocyte dysfunction and endothelial impairment to cognitive decline. Exp Gerontol. 2017;94:52–8.
doi: 10.1016/j.exger.2016.11.004
Ma J, et al. Regional cerebral blood flow response to vibrissal stimulation in mice lacking type I NOS gene expression. Am J Physiol. 1996;270(3 Pt 2):H1085–90.
Chen BR, et al. A critical role for the vascular endothelium in functional neurovascular coupling in the brain. J Am Heart Assoc. 2014;3(3): e000787.
doi: 10.1161/JAHA.114.000787
Stobart JL, et al. Astrocyte-induced cortical vasodilation is mediated by D-serine and endothelial nitric oxide synthase. Proc Natl Acad Sci U S A. 2013;110(8):3149–54.
doi: 10.1073/pnas.1215929110
Tarantini S, et al. Nicotinamide mononucleotide (NMN) supplementation rescues cerebromicrovascular endothelial function and neurovascular coupling responses and improves cognitive function in aged mice. Redox Biol. 2019;24: 101192.
doi: 10.1016/j.redox.2019.101192
Tarantini S, et al. Treatment with the BCL-2/BCL-xL inhibitor senolytic drug ABT263/Navitoclax improves functional hyperemia in aged mice. Geroscience. 2021;43:2427–40.
doi: 10.1007/s11357-021-00440-z
Park L, et al. Nox2-derived reactive oxygen species mediate neurovascular dysregulation in the aging mouse brain. J Cereb Blood Flow Metab. 2007;27(12):1908–18.
doi: 10.1038/sj.jcbfm.9600491
Csiszar A, et al. Overexpression of catalase targeted to mitochondria improves neurovascular coupling responses in aged mice. Geroscience. 2019;41(5):609–17.
doi: 10.1007/s11357-019-00111-0
Kiss T, et al. Circulating anti-geronic factors from heterochonic parabionts promote vascular rejuvenation in aged mice: transcriptional footprint of mitochondrial protection, attenuation of oxidative stress, and rescue of endothelial function by young blood. Geroscience. 2020;42(2):727–48.
doi: 10.1007/s11357-020-00180-6
Higashi Y, et al. IGF-1 and cardiovascular disease. Growth Horm IGF Res. 2019;45:6–16.
doi: 10.1016/j.ghir.2019.01.002
Fulop GA, et al. IGF-1 deficiency promotes pathological remodeling of cerebral arteries: a potential mechanism contributing to the pathogenesis of intracerebral hemorrhages in aging. J Gerontol A Biol Sci Med Sci. 2019;74(4):446–54.
doi: 10.1093/gerona/gly144
Tarantini S, et al. Insulin-like growth factor 1 deficiency exacerbates hypertension-induced cerebral microhemorrhages in mice, mimicking the aging phenotype. Aging Cell. 2017;16(3):469–79.
doi: 10.1111/acel.12583
Tarantini S, et al. Circulating IGF-1 deficiency exacerbates hypertension-induced microvascular rarefaction in the mouse hippocampus and retrosplenial cortex: implications for cerebromicrovascular and brain aging. Age (Dordr). 2016;38(4):273–89.
doi: 10.1007/s11357-016-9931-0
Toth P, et al. IGF-1 deficiency impairs neurovascular coupling in mice: implications for cerebromicrovascular aging. Aging Cell. 2015;14(6):1034–44.
doi: 10.1111/acel.12372
Toth P, et al. IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice. J Cereb Blood Flow Metab. 2014;34(12):1887–97.
doi: 10.1038/jcbfm.2014.156
Dong X, et al. The relationship between serum insulin-like growth factor I levels and ischemic stroke risk. PLoS ONE. 2014;9(4): e94845.
doi: 10.1371/journal.pone.0094845
Sonntag WE, et al. Insulin-like growth factor-1 in CNS and cerebrovascular aging. Front Aging Neurosci. 2013;5:27.
doi: 10.3389/fnagi.2013.00027
Troncoso R, et al. Energy-preserving effects of IGF-1 antagonize starvation-induced cardiac autophagy. Cardiovasc Res. 2012;93(2):320–9.
doi: 10.1093/cvr/cvr321
Higashi Y, et al. Aging, atherosclerosis, and IGF-1. J Gerontol A Biol Sci Med Sci. 2012;67(6):626–39.
doi: 10.1093/gerona/gls102
von der Thusen JH, et al. IGF-1 has plaque-stabilizing effects in atherosclerosis by altering vascular smooth muscle cell phenotype. Am J Pathol. 2011;178(2):924–34.
doi: 10.1016/j.ajpath.2010.10.007
Shai SY, et al. Low circulating insulin-like growth factor I increases atherosclerosis in Apoe-deficient mice. Am J Physiol Heart Circ Physiol. 2011;300(5):H1898–906.
doi: 10.1152/ajpheart.01081.2010
Prabhu D, et al. Loss of insulin-like growth factor-1 signaling in astrocytes disrupts glutamate handling. J Neurochem. 2019;151(6):689–702.
doi: 10.1111/jnc.14879
Logan S, et al. Insulin-like growth factor receptor signaling regulates working memory, mitochondrial metabolism, and amyloid-beta uptake in astrocytes. Mol Metab. 2018;9:141–55.
doi: 10.1016/j.molmet.2018.01.013
Littlejohn EL, Scott D, Saatman KE. Insulin-like growth factor-1 overexpression increases long-term survival of posttrauma-born hippocampal neurons while inhibiting ectopic migration following traumatic brain injury. Acta Neuropathol Commun. 2020;8(1):46.
doi: 10.1186/s40478-020-00925-6
Garwood CJ, et al. Insulin and IGF1 signalling pathways in human astrocytes in vitro and in vivo; characterisation, subcellular localisation and modulation of the receptors. Mol Brain. 2015;8:51.
doi: 10.1186/s13041-015-0138-6
Pardo J, et al. Insulin-like growth factor-I gene therapy increases hippocampal neurogenesis, astrocyte branching and improves spatial memory in female aging rats. Eur J Neurosci. 2016;44(4):2120–8.
doi: 10.1111/ejn.13278
Labandeira-Garcia JL, et al. Insulin-like growth factor-1 and neuroinflammation. Front Aging Neurosci. 2017;9:365.
doi: 10.3389/fnagi.2017.00365
Okoreeh AK, Bake S, Sohrabji F. Astrocyte-specific insulin-like growth factor-1 gene transfer in aging female rats improves stroke outcomes. Glia. 2017;65(7):1043–58.
doi: 10.1002/glia.23142
Piriz J, et al. IGF-I and the aging mammalian brain. Exp Gerontol. 2011;46(2–3):96–9.
doi: 10.1016/j.exger.2010.08.022
Fernandez AM, Torres-Aleman I. The many faces of insulin-like peptide signalling in the brain. Nat Rev Neurosci. 2012;13(4):225–39.
doi: 10.1038/nrn3209
Muller AP, et al. Reduced brain insulin-like growth factor I function during aging. Mol Cell Neurosci. 2012;49(1):9–12.
doi: 10.1016/j.mcn.2011.07.008
Trueba-Saiz A, et al. Loss of serum IGF-I input to the brain as an early biomarker of disease onset in Alzheimer mice. Transl Psychiatry. 2013;3: e330.
doi: 10.1038/tp.2013.102
Ascenzi F, et al. Effects of IGF-1 isoforms on muscle growth and sarcopenia. Aging Cell. 2019;18(3): e12954.
doi: 10.1111/acel.12954
Williamson TT, et al. Hormone replacement therapy attenuates hearing loss: mechanisms involving estrogen and the IGF-1 pathway. Aging Cell. 2019;18(3): e12939.
doi: 10.1111/acel.12939
Sonntag WE, Ramsey M, Carter CS. Growth hormone and insulin-like growth factor-1 (IGF-1) and their influence on cognitive aging. Ageing Res Rev. 2005;4(2):195–212.
doi: 10.1016/j.arr.2005.02.001
Sanders JL, et al. Trajectories of IGF-I predict mortality in older adults: the Cardiovascular Health Study. J Gerontol A Biol Sci Med Sci. 2018;73(7):953–9.
doi: 10.1093/gerona/glx143
O’Connor KG, et al. Serum levels of insulin-like growth factor-I are related to age and not to body composition in healthy women and men. J Gerontol A Biol Sci Med Sci. 1998;53(3):M176–82.
doi: 10.1093/gerona/53A.3.M176
Pavlov EP, et al. Responses of growth hormone (GH) and somatomedin-C to GH-releasing hormone in healthy aging men. J Clin Endocrinol Metab. 1986;62(3):595–600.
doi: 10.1210/jcem-62-3-595
Ameri P, et al. Vitamin D modulates the association of circulating insulin-like growth factor-1 with carotid artery intima-media thickness. Atherosclerosis. 2014;236(2):418–25.
doi: 10.1016/j.atherosclerosis.2014.08.022
Sherlala RA, et al. Relationship between serum IGF-1 and BMI differs by age. J Gerontol A Biol Sci Med Sci. 2020;76(7):1303–8.
doi: 10.1093/gerona/glaa282
Ungvari Z, Csiszar A. The emerging role of IGF-1 deficiency in cardiovascular aging: recent advances. J Gerontol A Biol Sci Med Sci. 2012;67(6):599–610.
doi: 10.1093/gerona/gls072
Tarantini S, et al. IGF1R signaling regulates astrocyte-mediated neurovascular coupling in mice: implications for brain aging. Geroscience. 2021;43(2):901–11.
doi: 10.1007/s11357-021-00350-0
Tarantini S, et al. Endothelial deficiency of insulin-like growth factor-1 receptor (IGF1R) impairs neurovascular coupling responses in mice, mimicking aspects of the brain aging phenotype. Geroscience. 2021;43(5):2387–94.
doi: 10.1007/s11357-021-00405-2
Bowie CR, Harvey PD. Administration and interpretation of the Trail Making Test. Nat Protoc. 2006;1(5):2277–81.
doi: 10.1038/nprot.2006.390
Alwatban M, et al. The breath-hold acceleration index: a new method to evaluate cerebrovascular reactivity using transcranial Doppler. J Neuroimaging. 2018;28(4):429–35.
doi: 10.1111/jon.12508
Jeong SM, et al. Lack of correlation between cerebral vasomotor reactivity and dynamic cerebral autoregulation during stepwise increases in inspired CO2 concentration. J Appl Physiol (1985). 2016;120(12):1434–41.
doi: 10.1152/japplphysiol.00390.2015
Zakzanis KK, Mraz R, Graham SJ. An fMRI study of the Trail Making Test. Neuropsychologia. 2005;43(13):1878–86.
doi: 10.1016/j.neuropsychologia.2005.03.013
Lipecz A, et al. Age-related impairment of neurovascular coupling responses: a dynamic vessel analysis (DVA)-based approach to measure decreased flicker light stimulus-induced retinal arteriolar dilation in healthy older adults. Geroscience. 2019;41(3):341–9.
doi: 10.1007/s11357-019-00078-y
Yabluchanskiy A, et al. Age-related alterations in the cerebrovasculature affect neurovascular coupling and BOLD fMRI responses: insights from animal models of aging. Psychophysiology. 2021;58(7): e13718.
doi: 10.1111/psyp.13718
West KL, et al. BOLD hemodynamic response function changes significantly with healthy aging. Neuroimage. 2018;188:198–207.
doi: 10.1016/j.neuroimage.2018.12.012
Csipo T, et al. Assessment of age-related decline of neurovascular coupling responses by functional near-infrared spectroscopy (fNIRS) in humans. Geroscience. 2019;41(5):495–509.
doi: 10.1007/s11357-019-00122-x
Tarantini S, et al. Pharmacologically induced impairment of neurovascular coupling responses alters gait coordination in mice. Geroscience. 2017;39(5–6):601–14.
doi: 10.1007/s11357-017-0003-x
Mokhber N, et al. Cerebral blood flow changes during aging process and in cognitive disorders: a review. Neuroradiol J. 2021;34(4):300–7.
doi: 10.1177/19714009211002778
Demirkaya S, et al. Normal blood flow velocities of basal cerebral arteries decrease with advancing age: a transcranial Doppler sonography study. Tohoku J Exp Med. 2008;214(2):145–9.
doi: 10.1620/tjem.214.145
Ungvari Z, et al. Endothelial dysfunction and angiogenesis impairment in the ageing vasculature. Nat Rev Cardiol. 2018;15(9):555–65.
doi: 10.1038/s41569-018-0030-z
Nyul-Toth A, et al. Demonstration of age-related blood-brain barrier disruption and cerebromicrovascular rarefaction in mice by longitudinal intravital two-photon microscopy and optical coherence tomography. Am J Physiol Heart Circ Physiol. 2021;320(4):H1370–92.
doi: 10.1152/ajpheart.00709.2020
Tucsek Z, et al. Aging exacerbates obesity-induced cerebromicrovascular rarefaction, neurovascular uncoupling, and cognitive decline in mice. J Gerontol A Biol Sci Med Sci. 2014;69(11):1339–52.
doi: 10.1093/gerona/glu080
Longden TA, et al. Capillary K(+)-sensing initiates retrograde hyperpolarization to increase local cerebral blood flow. Nat Neurosci. 2017;20(5):717–26.
doi: 10.1038/nn.4533
Crumpler R, Roman RJ, Fan F. Capillary stalling: a mechanism of decreased cerebral blood flow in AD/ADRD. J Exp Neurol. 2021;2(4):149–53.
Bracko O, et al. Causes and consequences of baseline cerebral blood flow reductions in Alzheimer’s disease. J Cereb Blood Flow Metab. 2021;41(7):1501–16.
doi: 10.1177/0271678X20982383
Fan F, Roman RJ. Reversal of cerebral hypoperfusion: a novel therapeutic target for the treatment of AD/ADRD? Geroscience. 2021;43(2):1065–7.
doi: 10.1007/s11357-021-00357-7
Tarantini S, et al. Pharmacologically-induced neurovascular uncoupling is associated with cognitive impairment in mice. J Cereb Blood Flow Metab. 2015;35(11):1871–81.
doi: 10.1038/jcbfm.2015.162
Toth P, et al. Purinergic glio-endothelial coupling during neuronal activity: role of P2Y1 receptors and eNOS in functional hyperemia in the mouse somatosensory cortex. Am J Physiol Heart Circ Physiol. 2015;309(11):H1837–45.
doi: 10.1152/ajpheart.00463.2015
Al-Bachari S, et al. Structural and physiological neurovascular changes in idiopathic Parkinson’s disease and its clinical phenotypes. J Cereb Blood Flow Metab. 2017;37(10):3409–21.
doi: 10.1177/0271678X16688919
Balbi M, et al. Inversion of neurovascular coupling after subarachnoid hemorrhage in vivo. J Cereb Blood Flow Metab. 2017;37(11):3625–34.
doi: 10.1177/0271678X16686595
Koide M, et al. Inversion of neurovascular coupling by subarachnoid blood depends on large-conductance Ca2+-activated K+ (BK) channels. Proc Natl Acad Sci U S A. 2012;109(21):E1387–95.
doi: 10.1073/pnas.1121359109
Pappas AC, Koide M, Wellman GC. Astrocyte Ca2+ signaling drives inversion of neurovascular coupling after subarachnoid hemorrhage. J Neurosci. 2015;35(39):13375–84.
doi: 10.1523/JNEUROSCI.1551-15.2015
Pappas AC, Koide M, Wellman GC. Purinergic signaling triggers endfoot high-amplitude Ca2+ signals and causes inversion of neurovascular coupling after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2016;36(11):1901–12.
doi: 10.1177/0271678X16650911
Chisalita SI, Arnqvist HJ. Insulin-like growth factor I receptors are more abundant than insulin receptors in human micro- and macrovascular endothelial cells. Am J Physiol Endocrinol Metab. 2004;286(6):E896-901.
doi: 10.1152/ajpendo.00327.2003
Attwell D, et al. Glial and neuronal control of brain blood flow. Nature. 2010;468(7321):232–43.
doi: 10.1038/nature09613
Lind BL, et al. Rapid stimulus-evoked astrocyte Ca2+ elevations and hemodynamic responses in mouse somatosensory cortex in vivo. Proc Natl Acad Sci U S A. 2013;110(48):E4678–87.
doi: 10.1073/pnas.1310065110
Otsu Y, et al. Calcium dynamics in astrocyte processes during neurovascular coupling. Nat Neurosci. 2015;18(2):210–8.
doi: 10.1038/nn.3906
Petzold GC, Murthy VN. Role of astrocytes in neurovascular coupling. Neuron. 2011;71(5):782–97.
doi: 10.1016/j.neuron.2011.08.009
Peng X, et al. Suppression of cortical functional hyperemia to vibrissal stimulation in the rat by epoxygenase inhibitors. Am J Physiol Heart Circ Physiol. 2002;283(5):H2029–37.
doi: 10.1152/ajpheart.01130.2000
Takano T, et al. Astrocyte-mediated control of cerebral blood flow. Nat Neurosci. 2006;9(2):260–7.
doi: 10.1038/nn1623
Zonta M, et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci. 2003;6(1):43–50.
doi: 10.1038/nn980
Pan W, Kastin AJ. Interactions of IGF-1 with the blood-brain barrier in vivo and in situ. Neuroendocrinology. 2000;72(3):171–8.
doi: 10.1159/000054584
Csipo T, et al. Increased cognitive workload evokes greater neurovascular coupling responses in healthy young adults. PLoS ONE. 2021;16(5): e0250043.
doi: 10.1371/journal.pone.0250043
Jor’dan AJ, et al. Diminished locomotor control is associated with reduced neurovascular coupling in older adults. J Gerontol A Biol Sci Med Sci. 2020;75(8):1516–22.
doi: 10.1093/gerona/glz006
Sorond FA, et al. Neurovascular coupling is impaired in slow walkers: the MOBILIZE Boston Study. Ann Neurol. 2011;70(2):213–20.
doi: 10.1002/ana.22433
Sorond FA, et al. Cerebral blood flow regulation during cognitive tasks: effects of healthy aging. Cortex. 2008;44(2):179–84.
doi: 10.1016/j.cortex.2006.01.003
Csiszar A, et al. Role of endothelial NAD+ deficiency in age-related vascular dysfunction. Am J Physiol Heart Circ Physiol. 2019;316(6):H1253–66.
doi: 10.1152/ajpheart.00039.2019

Auteurs

Luca Toth (L)

Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary.
Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary.

Andras Czigler (A)

Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary.
Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary.

Emoke Hegedus (E)

Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary.

Hedvig Komaromy (H)

Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary.

Krisztina Amrein (K)

Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary.

Endre Czeiter (E)

Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary.

Andriy Yabluchanskiy (A)

Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.

Akos Koller (A)

Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary.

Gergely Orsi (G)

ELKH-PTE Clinical Neuroscience MR Research Group, Eötvös Lóránd Research Network (ELKH), Pecs, Hungary.
Department of Neurology, Medical School, University of Pecs, Pecs, Hungary.

Gabor Perlaki (G)

ELKH-PTE Clinical Neuroscience MR Research Group, Eötvös Lóránd Research Network (ELKH), Pecs, Hungary.
Department of Neurology, Medical School, University of Pecs, Pecs, Hungary.

Attila Schwarcz (A)

Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary.

Andras Buki (A)

Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary.

Zoltan Ungvari (Z)

Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.

Peter J Toth (PJ)

Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary. toth.peter@pte.hu.
Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary. toth.peter@pte.hu.
Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. toth.peter@pte.hu.
International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary. toth.peter@pte.hu.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH