Age-related decline in circulating IGF-1 associates with impaired neurovascular coupling responses in older adults.
Aging
Cognitive decline
Neurovascular uncoupling
VCI
VCID
Vascular cognitive impairment
Journal
GeroScience
ISSN: 2509-2723
Titre abrégé: Geroscience
Pays: Switzerland
ID NLM: 101686284
Informations de publication
Date de publication:
12 2022
12 2022
Historique:
received:
24
04
2022
accepted:
09
07
2022
pubmed:
23
7
2022
medline:
23
12
2022
entrez:
22
7
2022
Statut:
ppublish
Résumé
Impairment of moment-to-moment adjustment of cerebral blood flow (CBF) to the increased oxygen and energy requirements of active brain regions via neurovascular coupling (NVC) contributes to the genesis of age-related cognitive impairment. Aging is associated with marked deficiency in the vasoprotective hormone insulin-like growth factor-1 (IGF-1). Preclinical studies on animal models of aging suggest that circulating IGF-1 deficiency is causally linked to impairment of NVC responses. The present study was designed to test the hypotheses that decreases in circulating IGF-1 levels in older adults also predict the magnitude of age-related decline of NVC responses. In a single-center cross-sectional study, we enrolled healthy young (n = 31, 11 female, 20 male, mean age: 28.4 + / - 4.2 years) and aged volunteers (n = 32, 18 female, 14 male, mean age: 67.9 + / - 4.1 years). Serum IGF-1 level, basal CBF (phase contrast magnetic resonance imaging (MRI)), and NVC responses during the trail making task (with transcranial Doppler sonography) were assessed. We found that circulating IGF-1 levels were significantly decreased with age and associated with decreased basal CBF. Age-related decline in IGF-1 levels predicted the magnitude of age-related decline in NVC responses. In conclusion, our study provides additional evidence in support of the concept that age-related circulating IGF-1 deficiency contributes to neurovascular aging, impairing CBF and functional hyperemia in older adults.
Identifiants
pubmed: 35869380
doi: 10.1007/s11357-022-00623-2
pii: 10.1007/s11357-022-00623-2
pmc: PMC9768079
doi:
Substances chimiques
Insulin-Like Growth Factor I
67763-96-6
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
2771-2783Subventions
Organisme : NCI NIH HHS
ID : R01 CA255840
Pays : United States
Organisme : NIA NIH HHS
ID : K01 AG073614
Pays : United States
Organisme : NIGMS NIH HHS
ID : P20 GM103447
Pays : United States
Organisme : NIA NIH HHS
ID : RF1 AG072295
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS100782
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG055395
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG068295
Pays : United States
Organisme : NIGMS NIH HHS
ID : P20 GM125528
Pays : United States
Informations de copyright
© 2022. The Author(s).
Références
Tarantini S, et al. Impaired neurovascular coupling in aging and Alzheimer’s disease: contribution of astrocyte dysfunction and endothelial impairment to cognitive decline. Exp Gerontol. 2017;94:52–8.
doi: 10.1016/j.exger.2016.11.004
Ma J, et al. Regional cerebral blood flow response to vibrissal stimulation in mice lacking type I NOS gene expression. Am J Physiol. 1996;270(3 Pt 2):H1085–90.
Chen BR, et al. A critical role for the vascular endothelium in functional neurovascular coupling in the brain. J Am Heart Assoc. 2014;3(3): e000787.
doi: 10.1161/JAHA.114.000787
Stobart JL, et al. Astrocyte-induced cortical vasodilation is mediated by D-serine and endothelial nitric oxide synthase. Proc Natl Acad Sci U S A. 2013;110(8):3149–54.
doi: 10.1073/pnas.1215929110
Tarantini S, et al. Nicotinamide mononucleotide (NMN) supplementation rescues cerebromicrovascular endothelial function and neurovascular coupling responses and improves cognitive function in aged mice. Redox Biol. 2019;24: 101192.
doi: 10.1016/j.redox.2019.101192
Tarantini S, et al. Treatment with the BCL-2/BCL-xL inhibitor senolytic drug ABT263/Navitoclax improves functional hyperemia in aged mice. Geroscience. 2021;43:2427–40.
doi: 10.1007/s11357-021-00440-z
Park L, et al. Nox2-derived reactive oxygen species mediate neurovascular dysregulation in the aging mouse brain. J Cereb Blood Flow Metab. 2007;27(12):1908–18.
doi: 10.1038/sj.jcbfm.9600491
Csiszar A, et al. Overexpression of catalase targeted to mitochondria improves neurovascular coupling responses in aged mice. Geroscience. 2019;41(5):609–17.
doi: 10.1007/s11357-019-00111-0
Kiss T, et al. Circulating anti-geronic factors from heterochonic parabionts promote vascular rejuvenation in aged mice: transcriptional footprint of mitochondrial protection, attenuation of oxidative stress, and rescue of endothelial function by young blood. Geroscience. 2020;42(2):727–48.
doi: 10.1007/s11357-020-00180-6
Higashi Y, et al. IGF-1 and cardiovascular disease. Growth Horm IGF Res. 2019;45:6–16.
doi: 10.1016/j.ghir.2019.01.002
Fulop GA, et al. IGF-1 deficiency promotes pathological remodeling of cerebral arteries: a potential mechanism contributing to the pathogenesis of intracerebral hemorrhages in aging. J Gerontol A Biol Sci Med Sci. 2019;74(4):446–54.
doi: 10.1093/gerona/gly144
Tarantini S, et al. Insulin-like growth factor 1 deficiency exacerbates hypertension-induced cerebral microhemorrhages in mice, mimicking the aging phenotype. Aging Cell. 2017;16(3):469–79.
doi: 10.1111/acel.12583
Tarantini S, et al. Circulating IGF-1 deficiency exacerbates hypertension-induced microvascular rarefaction in the mouse hippocampus and retrosplenial cortex: implications for cerebromicrovascular and brain aging. Age (Dordr). 2016;38(4):273–89.
doi: 10.1007/s11357-016-9931-0
Toth P, et al. IGF-1 deficiency impairs neurovascular coupling in mice: implications for cerebromicrovascular aging. Aging Cell. 2015;14(6):1034–44.
doi: 10.1111/acel.12372
Toth P, et al. IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice. J Cereb Blood Flow Metab. 2014;34(12):1887–97.
doi: 10.1038/jcbfm.2014.156
Dong X, et al. The relationship between serum insulin-like growth factor I levels and ischemic stroke risk. PLoS ONE. 2014;9(4): e94845.
doi: 10.1371/journal.pone.0094845
Sonntag WE, et al. Insulin-like growth factor-1 in CNS and cerebrovascular aging. Front Aging Neurosci. 2013;5:27.
doi: 10.3389/fnagi.2013.00027
Troncoso R, et al. Energy-preserving effects of IGF-1 antagonize starvation-induced cardiac autophagy. Cardiovasc Res. 2012;93(2):320–9.
doi: 10.1093/cvr/cvr321
Higashi Y, et al. Aging, atherosclerosis, and IGF-1. J Gerontol A Biol Sci Med Sci. 2012;67(6):626–39.
doi: 10.1093/gerona/gls102
von der Thusen JH, et al. IGF-1 has plaque-stabilizing effects in atherosclerosis by altering vascular smooth muscle cell phenotype. Am J Pathol. 2011;178(2):924–34.
doi: 10.1016/j.ajpath.2010.10.007
Shai SY, et al. Low circulating insulin-like growth factor I increases atherosclerosis in Apoe-deficient mice. Am J Physiol Heart Circ Physiol. 2011;300(5):H1898–906.
doi: 10.1152/ajpheart.01081.2010
Prabhu D, et al. Loss of insulin-like growth factor-1 signaling in astrocytes disrupts glutamate handling. J Neurochem. 2019;151(6):689–702.
doi: 10.1111/jnc.14879
Logan S, et al. Insulin-like growth factor receptor signaling regulates working memory, mitochondrial metabolism, and amyloid-beta uptake in astrocytes. Mol Metab. 2018;9:141–55.
doi: 10.1016/j.molmet.2018.01.013
Littlejohn EL, Scott D, Saatman KE. Insulin-like growth factor-1 overexpression increases long-term survival of posttrauma-born hippocampal neurons while inhibiting ectopic migration following traumatic brain injury. Acta Neuropathol Commun. 2020;8(1):46.
doi: 10.1186/s40478-020-00925-6
Garwood CJ, et al. Insulin and IGF1 signalling pathways in human astrocytes in vitro and in vivo; characterisation, subcellular localisation and modulation of the receptors. Mol Brain. 2015;8:51.
doi: 10.1186/s13041-015-0138-6
Pardo J, et al. Insulin-like growth factor-I gene therapy increases hippocampal neurogenesis, astrocyte branching and improves spatial memory in female aging rats. Eur J Neurosci. 2016;44(4):2120–8.
doi: 10.1111/ejn.13278
Labandeira-Garcia JL, et al. Insulin-like growth factor-1 and neuroinflammation. Front Aging Neurosci. 2017;9:365.
doi: 10.3389/fnagi.2017.00365
Okoreeh AK, Bake S, Sohrabji F. Astrocyte-specific insulin-like growth factor-1 gene transfer in aging female rats improves stroke outcomes. Glia. 2017;65(7):1043–58.
doi: 10.1002/glia.23142
Piriz J, et al. IGF-I and the aging mammalian brain. Exp Gerontol. 2011;46(2–3):96–9.
doi: 10.1016/j.exger.2010.08.022
Fernandez AM, Torres-Aleman I. The many faces of insulin-like peptide signalling in the brain. Nat Rev Neurosci. 2012;13(4):225–39.
doi: 10.1038/nrn3209
Muller AP, et al. Reduced brain insulin-like growth factor I function during aging. Mol Cell Neurosci. 2012;49(1):9–12.
doi: 10.1016/j.mcn.2011.07.008
Trueba-Saiz A, et al. Loss of serum IGF-I input to the brain as an early biomarker of disease onset in Alzheimer mice. Transl Psychiatry. 2013;3: e330.
doi: 10.1038/tp.2013.102
Ascenzi F, et al. Effects of IGF-1 isoforms on muscle growth and sarcopenia. Aging Cell. 2019;18(3): e12954.
doi: 10.1111/acel.12954
Williamson TT, et al. Hormone replacement therapy attenuates hearing loss: mechanisms involving estrogen and the IGF-1 pathway. Aging Cell. 2019;18(3): e12939.
doi: 10.1111/acel.12939
Sonntag WE, Ramsey M, Carter CS. Growth hormone and insulin-like growth factor-1 (IGF-1) and their influence on cognitive aging. Ageing Res Rev. 2005;4(2):195–212.
doi: 10.1016/j.arr.2005.02.001
Sanders JL, et al. Trajectories of IGF-I predict mortality in older adults: the Cardiovascular Health Study. J Gerontol A Biol Sci Med Sci. 2018;73(7):953–9.
doi: 10.1093/gerona/glx143
O’Connor KG, et al. Serum levels of insulin-like growth factor-I are related to age and not to body composition in healthy women and men. J Gerontol A Biol Sci Med Sci. 1998;53(3):M176–82.
doi: 10.1093/gerona/53A.3.M176
Pavlov EP, et al. Responses of growth hormone (GH) and somatomedin-C to GH-releasing hormone in healthy aging men. J Clin Endocrinol Metab. 1986;62(3):595–600.
doi: 10.1210/jcem-62-3-595
Ameri P, et al. Vitamin D modulates the association of circulating insulin-like growth factor-1 with carotid artery intima-media thickness. Atherosclerosis. 2014;236(2):418–25.
doi: 10.1016/j.atherosclerosis.2014.08.022
Sherlala RA, et al. Relationship between serum IGF-1 and BMI differs by age. J Gerontol A Biol Sci Med Sci. 2020;76(7):1303–8.
doi: 10.1093/gerona/glaa282
Ungvari Z, Csiszar A. The emerging role of IGF-1 deficiency in cardiovascular aging: recent advances. J Gerontol A Biol Sci Med Sci. 2012;67(6):599–610.
doi: 10.1093/gerona/gls072
Tarantini S, et al. IGF1R signaling regulates astrocyte-mediated neurovascular coupling in mice: implications for brain aging. Geroscience. 2021;43(2):901–11.
doi: 10.1007/s11357-021-00350-0
Tarantini S, et al. Endothelial deficiency of insulin-like growth factor-1 receptor (IGF1R) impairs neurovascular coupling responses in mice, mimicking aspects of the brain aging phenotype. Geroscience. 2021;43(5):2387–94.
doi: 10.1007/s11357-021-00405-2
Bowie CR, Harvey PD. Administration and interpretation of the Trail Making Test. Nat Protoc. 2006;1(5):2277–81.
doi: 10.1038/nprot.2006.390
Alwatban M, et al. The breath-hold acceleration index: a new method to evaluate cerebrovascular reactivity using transcranial Doppler. J Neuroimaging. 2018;28(4):429–35.
doi: 10.1111/jon.12508
Jeong SM, et al. Lack of correlation between cerebral vasomotor reactivity and dynamic cerebral autoregulation during stepwise increases in inspired CO2 concentration. J Appl Physiol (1985). 2016;120(12):1434–41.
doi: 10.1152/japplphysiol.00390.2015
Zakzanis KK, Mraz R, Graham SJ. An fMRI study of the Trail Making Test. Neuropsychologia. 2005;43(13):1878–86.
doi: 10.1016/j.neuropsychologia.2005.03.013
Lipecz A, et al. Age-related impairment of neurovascular coupling responses: a dynamic vessel analysis (DVA)-based approach to measure decreased flicker light stimulus-induced retinal arteriolar dilation in healthy older adults. Geroscience. 2019;41(3):341–9.
doi: 10.1007/s11357-019-00078-y
Yabluchanskiy A, et al. Age-related alterations in the cerebrovasculature affect neurovascular coupling and BOLD fMRI responses: insights from animal models of aging. Psychophysiology. 2021;58(7): e13718.
doi: 10.1111/psyp.13718
West KL, et al. BOLD hemodynamic response function changes significantly with healthy aging. Neuroimage. 2018;188:198–207.
doi: 10.1016/j.neuroimage.2018.12.012
Csipo T, et al. Assessment of age-related decline of neurovascular coupling responses by functional near-infrared spectroscopy (fNIRS) in humans. Geroscience. 2019;41(5):495–509.
doi: 10.1007/s11357-019-00122-x
Tarantini S, et al. Pharmacologically induced impairment of neurovascular coupling responses alters gait coordination in mice. Geroscience. 2017;39(5–6):601–14.
doi: 10.1007/s11357-017-0003-x
Mokhber N, et al. Cerebral blood flow changes during aging process and in cognitive disorders: a review. Neuroradiol J. 2021;34(4):300–7.
doi: 10.1177/19714009211002778
Demirkaya S, et al. Normal blood flow velocities of basal cerebral arteries decrease with advancing age: a transcranial Doppler sonography study. Tohoku J Exp Med. 2008;214(2):145–9.
doi: 10.1620/tjem.214.145
Ungvari Z, et al. Endothelial dysfunction and angiogenesis impairment in the ageing vasculature. Nat Rev Cardiol. 2018;15(9):555–65.
doi: 10.1038/s41569-018-0030-z
Nyul-Toth A, et al. Demonstration of age-related blood-brain barrier disruption and cerebromicrovascular rarefaction in mice by longitudinal intravital two-photon microscopy and optical coherence tomography. Am J Physiol Heart Circ Physiol. 2021;320(4):H1370–92.
doi: 10.1152/ajpheart.00709.2020
Tucsek Z, et al. Aging exacerbates obesity-induced cerebromicrovascular rarefaction, neurovascular uncoupling, and cognitive decline in mice. J Gerontol A Biol Sci Med Sci. 2014;69(11):1339–52.
doi: 10.1093/gerona/glu080
Longden TA, et al. Capillary K(+)-sensing initiates retrograde hyperpolarization to increase local cerebral blood flow. Nat Neurosci. 2017;20(5):717–26.
doi: 10.1038/nn.4533
Crumpler R, Roman RJ, Fan F. Capillary stalling: a mechanism of decreased cerebral blood flow in AD/ADRD. J Exp Neurol. 2021;2(4):149–53.
Bracko O, et al. Causes and consequences of baseline cerebral blood flow reductions in Alzheimer’s disease. J Cereb Blood Flow Metab. 2021;41(7):1501–16.
doi: 10.1177/0271678X20982383
Fan F, Roman RJ. Reversal of cerebral hypoperfusion: a novel therapeutic target for the treatment of AD/ADRD? Geroscience. 2021;43(2):1065–7.
doi: 10.1007/s11357-021-00357-7
Tarantini S, et al. Pharmacologically-induced neurovascular uncoupling is associated with cognitive impairment in mice. J Cereb Blood Flow Metab. 2015;35(11):1871–81.
doi: 10.1038/jcbfm.2015.162
Toth P, et al. Purinergic glio-endothelial coupling during neuronal activity: role of P2Y1 receptors and eNOS in functional hyperemia in the mouse somatosensory cortex. Am J Physiol Heart Circ Physiol. 2015;309(11):H1837–45.
doi: 10.1152/ajpheart.00463.2015
Al-Bachari S, et al. Structural and physiological neurovascular changes in idiopathic Parkinson’s disease and its clinical phenotypes. J Cereb Blood Flow Metab. 2017;37(10):3409–21.
doi: 10.1177/0271678X16688919
Balbi M, et al. Inversion of neurovascular coupling after subarachnoid hemorrhage in vivo. J Cereb Blood Flow Metab. 2017;37(11):3625–34.
doi: 10.1177/0271678X16686595
Koide M, et al. Inversion of neurovascular coupling by subarachnoid blood depends on large-conductance Ca2+-activated K+ (BK) channels. Proc Natl Acad Sci U S A. 2012;109(21):E1387–95.
doi: 10.1073/pnas.1121359109
Pappas AC, Koide M, Wellman GC. Astrocyte Ca2+ signaling drives inversion of neurovascular coupling after subarachnoid hemorrhage. J Neurosci. 2015;35(39):13375–84.
doi: 10.1523/JNEUROSCI.1551-15.2015
Pappas AC, Koide M, Wellman GC. Purinergic signaling triggers endfoot high-amplitude Ca2+ signals and causes inversion of neurovascular coupling after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2016;36(11):1901–12.
doi: 10.1177/0271678X16650911
Chisalita SI, Arnqvist HJ. Insulin-like growth factor I receptors are more abundant than insulin receptors in human micro- and macrovascular endothelial cells. Am J Physiol Endocrinol Metab. 2004;286(6):E896-901.
doi: 10.1152/ajpendo.00327.2003
Attwell D, et al. Glial and neuronal control of brain blood flow. Nature. 2010;468(7321):232–43.
doi: 10.1038/nature09613
Lind BL, et al. Rapid stimulus-evoked astrocyte Ca2+ elevations and hemodynamic responses in mouse somatosensory cortex in vivo. Proc Natl Acad Sci U S A. 2013;110(48):E4678–87.
doi: 10.1073/pnas.1310065110
Otsu Y, et al. Calcium dynamics in astrocyte processes during neurovascular coupling. Nat Neurosci. 2015;18(2):210–8.
doi: 10.1038/nn.3906
Petzold GC, Murthy VN. Role of astrocytes in neurovascular coupling. Neuron. 2011;71(5):782–97.
doi: 10.1016/j.neuron.2011.08.009
Peng X, et al. Suppression of cortical functional hyperemia to vibrissal stimulation in the rat by epoxygenase inhibitors. Am J Physiol Heart Circ Physiol. 2002;283(5):H2029–37.
doi: 10.1152/ajpheart.01130.2000
Takano T, et al. Astrocyte-mediated control of cerebral blood flow. Nat Neurosci. 2006;9(2):260–7.
doi: 10.1038/nn1623
Zonta M, et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci. 2003;6(1):43–50.
doi: 10.1038/nn980
Pan W, Kastin AJ. Interactions of IGF-1 with the blood-brain barrier in vivo and in situ. Neuroendocrinology. 2000;72(3):171–8.
doi: 10.1159/000054584
Csipo T, et al. Increased cognitive workload evokes greater neurovascular coupling responses in healthy young adults. PLoS ONE. 2021;16(5): e0250043.
doi: 10.1371/journal.pone.0250043
Jor’dan AJ, et al. Diminished locomotor control is associated with reduced neurovascular coupling in older adults. J Gerontol A Biol Sci Med Sci. 2020;75(8):1516–22.
doi: 10.1093/gerona/glz006
Sorond FA, et al. Neurovascular coupling is impaired in slow walkers: the MOBILIZE Boston Study. Ann Neurol. 2011;70(2):213–20.
doi: 10.1002/ana.22433
Sorond FA, et al. Cerebral blood flow regulation during cognitive tasks: effects of healthy aging. Cortex. 2008;44(2):179–84.
doi: 10.1016/j.cortex.2006.01.003
Csiszar A, et al. Role of endothelial NAD+ deficiency in age-related vascular dysfunction. Am J Physiol Heart Circ Physiol. 2019;316(6):H1253–66.
doi: 10.1152/ajpheart.00039.2019