PM2.5 promotes NSCLC carcinogenesis through translationally and transcriptionally activating DLAT-mediated glycolysis reprograming.
Carcinogenesis
/ genetics
Carcinoma, Non-Small-Cell Lung
/ pathology
Cell Line, Tumor
Cell Proliferation
/ physiology
Fluorodeoxyglucose F18
Gene Expression Regulation, Neoplastic
Glycolysis
/ genetics
Humans
Lung Neoplasms
/ genetics
Particulate Matter
/ toxicity
Positron Emission Tomography Computed Tomography
DLAT
Glycolysis reprograming
Non-small cell lung cancer (NSCLC)
PM2.5
Sp1
Transcription
Translation
eIF4E
Journal
Journal of experimental & clinical cancer research : CR
ISSN: 1756-9966
Titre abrégé: J Exp Clin Cancer Res
Pays: England
ID NLM: 8308647
Informations de publication
Date de publication:
22 Jul 2022
22 Jul 2022
Historique:
received:
13
05
2022
accepted:
11
07
2022
entrez:
22
7
2022
pubmed:
23
7
2022
medline:
27
7
2022
Statut:
epublish
Résumé
Airborne fine particulate matter (PM2.5) has been associated with lung cancer development and progression in never smokers. However, the molecular mechanisms underlying PM2.5-induced lung cancer remain largely unknown. The aim of this study was to explore the mechanisms by which PM2.5 regulated the carcinogenesis of non-small cell lung cancer (NSCLC). Paralleled ribosome sequencing (Ribo-seq) and RNA sequencing (RNA-seq) were performed to identify PM2.5-associated genes for further study. Quantitative real time-PCR (qRT-PCR), Western blot, and immunohistochemistry (IHC) were used to determine mRNA and protein expression levels in tissues and cells. The biological roles of PM2.5 and PM2.5-dysregulated gene were assessed by gain- and loss-of-function experiments, biochemical analyses, and Seahorse XF glycolysis stress assays. Human tissue microarray analysis and We found that PM2.5 induced a translation shift towards glycolysis pathway genes and increased glycolysis metabolism, as evidenced by increased L-lactate and pyruvate concentrations or higher extracellular acidification rate (ECAR) in vitro and in vivo. Particularly, PM2.5 enhanced the expression of glycolytic gene DLAT, which promoted glycolysis but suppressed acetyl-CoA production and enhanced the malignancy of NSCLC cells. Clinically, high expression of DLAT was positively associated with tumor size, poorer prognosis, and SUVmax values of This study demonstrated that PM2.5-activated overexpression of DLAT and enhancement in glycolysis metabolism contributed to the tumorigenesis of NSCLC, suggesting that DLAT-associated pathway may be a therapeutic target for NSCLC.
Sections du résumé
BACKGROUND
BACKGROUND
Airborne fine particulate matter (PM2.5) has been associated with lung cancer development and progression in never smokers. However, the molecular mechanisms underlying PM2.5-induced lung cancer remain largely unknown. The aim of this study was to explore the mechanisms by which PM2.5 regulated the carcinogenesis of non-small cell lung cancer (NSCLC).
METHODS
METHODS
Paralleled ribosome sequencing (Ribo-seq) and RNA sequencing (RNA-seq) were performed to identify PM2.5-associated genes for further study. Quantitative real time-PCR (qRT-PCR), Western blot, and immunohistochemistry (IHC) were used to determine mRNA and protein expression levels in tissues and cells. The biological roles of PM2.5 and PM2.5-dysregulated gene were assessed by gain- and loss-of-function experiments, biochemical analyses, and Seahorse XF glycolysis stress assays. Human tissue microarray analysis and
RESULTS
RESULTS
We found that PM2.5 induced a translation shift towards glycolysis pathway genes and increased glycolysis metabolism, as evidenced by increased L-lactate and pyruvate concentrations or higher extracellular acidification rate (ECAR) in vitro and in vivo. Particularly, PM2.5 enhanced the expression of glycolytic gene DLAT, which promoted glycolysis but suppressed acetyl-CoA production and enhanced the malignancy of NSCLC cells. Clinically, high expression of DLAT was positively associated with tumor size, poorer prognosis, and SUVmax values of
CONCLUSIONS
CONCLUSIONS
This study demonstrated that PM2.5-activated overexpression of DLAT and enhancement in glycolysis metabolism contributed to the tumorigenesis of NSCLC, suggesting that DLAT-associated pathway may be a therapeutic target for NSCLC.
Identifiants
pubmed: 35869499
doi: 10.1186/s13046-022-02437-8
pii: 10.1186/s13046-022-02437-8
pmc: PMC9308224
doi:
Substances chimiques
Particulate Matter
0
Fluorodeoxyglucose F18
0Z5B2CJX4D
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
229Subventions
Organisme : National Natural Science Foundation of China
ID : 41977372
Organisme : National Natural Science Foundation of China
ID : 81903412
Organisme : Natural Science Foundation of Guangdong Province
ID : 117-00004112
Organisme : Natural Science Foundation of Guangdong Province
ID : 2022A1515012033
Organisme : Science, Technology and Innovation Commission of Shenzhen Municipality
ID : JCYJ20190806154210829
Organisme : Science, Technology and Innovation Commission of Shenzhen Municipality
ID : JCYJ20170818100842319
Organisme : Natural Science Foundation of Shenzhen City
ID : 20200812115712001
Informations de copyright
© 2022. The Author(s).
Références
Methods Mol Biol. 2019;1907:1-15
pubmed: 30542987
Neoplasia. 2019 Jul;21(7):641-652
pubmed: 31100640
Nat Commun. 2019 Jun 11;10(1):2542
pubmed: 31186416
Carcinogenesis. 2015 Jun;36 Suppl 1:S203-31
pubmed: 26106140
J Pathol. 2018 Apr;244(5):650-666
pubmed: 29293271
Cancer Metab. 2013 Jan 23;1(1):6
pubmed: 24280073
Science. 2016 Jun 17;352(6292):1413-6
pubmed: 27313038
J Natl Cancer Inst. 2017 Nov 1;109(11):
pubmed: 29059435
Int J Environ Res Public Health. 2020 Jul 06;17(13):
pubmed: 32640694
Int J Environ Res Public Health. 2020 Feb 25;17(5):
pubmed: 32106556
Wiley Interdiscip Rev RNA. 2014 May-Jun;5(3):301-15
pubmed: 24375939
Cancer Prev Res (Phila). 2018 Jul;11(7):371-382
pubmed: 29545399
Oncogene. 2004 Apr 19;23(18):3189-99
pubmed: 15094768
Am J Respir Crit Care Med. 2011 Dec 15;184(12):1374-81
pubmed: 21980033
Cells. 2019 Oct 09;8(10):
pubmed: 31600993
Pharmacol Ther. 2015 Aug;152:111-24
pubmed: 25960131
Cancers (Basel). 2019 Feb 10;11(2):
pubmed: 30744199
Cancer Cell. 2018 Mar 12;33(3):368-385.e7
pubmed: 29455928
Carcinogenesis. 2017 Jun 1;38(6):615-626
pubmed: 28419250
Nat Commun. 2015 May 26;6:7200
pubmed: 26007203
Cells. 2020 Oct 16;9(10):
pubmed: 33081387
Nat Rev Mol Cell Biol. 2015 Nov;16(11):651-64
pubmed: 26465719
Toxicol In Vitro. 2004 Apr;18(2):203-12
pubmed: 14757111
Nucleic Acids Res. 2018 Jun 20;46(11):5692-5703
pubmed: 29746664
Lung Cancer. 2011 Apr;72(1):9-15
pubmed: 21272954
Cancer Cell. 2012 Mar 20;21(3):297-308
pubmed: 22439925
Environ Health Perspect. 2014 Sep;122(9):926-32
pubmed: 24911062
Nature. 2012 Feb 22;485(7396):55-61
pubmed: 22367541
Ecotoxicol Environ Saf. 2017 Nov;145:605-614
pubmed: 28802142
J Thorac Oncol. 2019 Mar;14(3):436-444
pubmed: 30445189
Chest. 2017 Jan;151(1):193-203
pubmed: 27780786
Nat Rev Cancer. 2015 May;15(5):276-89
pubmed: 25907220
Inflamm Res. 2018 Sep;67(9):765-776
pubmed: 29922853
Gastroenterology. 2020 Mar;158(4):985-999.e9
pubmed: 31759926
Sci Total Environ. 2017 Jul 1;589:212-221
pubmed: 28262365
Environ Health Perspect. 2020 Oct;128(10):107004
pubmed: 33035119
Nat Rev Cancer. 2013 Sep;13(9):674-8
pubmed: 23924644
Aging Cell. 2020 Oct;19(10):e13231
pubmed: 32951297
Nat Rev Genet. 2012 Mar 13;13(4):227-32
pubmed: 22411467
Nat Rev Cancer. 2016 Apr 26;16(5):288-304
pubmed: 27112207
Thorax. 2016 Oct;71(10):891-8
pubmed: 27491839
Environ Health Perspect. 2017 Nov 07;125(11):117002
pubmed: 29116930
Nat Rev Mol Cell Biol. 2018 Mar;19(3):158-174
pubmed: 29165424
Circ Res. 2019 Aug 2;125(4):431-448
pubmed: 31284834
Cell. 2003 Dec 12;115(6):739-50
pubmed: 14675538
Lancet Oncol. 2013 Aug;14(9):813-22
pubmed: 23849838
Cell. 2015 Jul 2;162(1):59-71
pubmed: 26095252
Toxicol In Vitro. 2017 Feb;38:33-40
pubmed: 27825930
Lancet Oncol. 2013 Dec;14(13):1262-3
pubmed: 25035875
Chemosphere. 2021 Jan;262:128305
pubmed: 33182158
Sci Total Environ. 2018 Sep 1;634:1435-1444
pubmed: 29710643
Front Genet. 2018 Oct 24;9:470
pubmed: 30459806
Int J Mol Sci. 2019 Dec 05;20(24):
pubmed: 31817513
Cancer Lett. 2019 Jun 1;451:142-149
pubmed: 30851418
Am J Transl Res. 2015 Jun 15;7(6):1140-51
pubmed: 26279757
Nature. 2011 May 19;473(7347):337-42
pubmed: 21593866
J Biol Chem. 2020 Apr 3;295(14):4617-4630
pubmed: 32115405
Toxicol Lett. 2020 Oct 15;333:33-41
pubmed: 32687961
J Biol Chem. 2014 Jun 13;289(24):16615-23
pubmed: 24798336
Nat Rev Mol Cell Biol. 2010 Feb;11(2):113-27
pubmed: 20094052