Role of circulating long non-coding RNA for the improvement of the predictive ability of the CHA 2 DS 2 -VASc score in patients with atrial fibrillation.
Journal
Chinese medical journal
ISSN: 2542-5641
Titre abrégé: Chin Med J (Engl)
Pays: China
ID NLM: 7513795
Informations de publication
Date de publication:
20 Jun 2022
20 Jun 2022
Historique:
pubmed:
24
7
2022
medline:
28
9
2022
entrez:
23
7
2022
Statut:
epublish
Résumé
The CHA 2 DS 2 -VASc score was initially applied to stratify stroke risk in patients with atrial fibrillation (AF) and was found to be effective in predicting all-cause mortality outcomes. To date, it is still unclear whether circulating long non-coding RNAs (lncRNAs) as emerging biomarkers, can improve the predictive power of the CHA 2 DS 2 -VASc score in stroke and all-cause mortality. Candidate lncRNAs were screened by searching the literature and analyzing previous RNA sequencing results. After preliminary verification in 29 patients with AF, the final selected lncRNAs were evaluated by Cox proportional hazards regression in 192 patients to determine whether their relative expression levels were associated with stroke and all-cause mortality. The c-statistic, net reclassification improvement (NRI), and integrated discrimination improvement of the patients were calculated to evaluate the discrimination and reclassification power for stroke and all-cause mortality when adding lncRNA expression levels to the CHA 2 DS 2 -VASc score model. Five plasma lncRNAs associated with stroke and all-cause mortality in AF patients were selected in our screening process. Patients with elevated H19 levels were found to have a higher risk of stroke (hazard ratio [HR] 3.264, 95% confidence interval [CI]: 1.364-7.813, P = 0.008). Adding the H19 expression level to the CHA 2 DS 2 -VASc score significantly improved the discrimination and reclassification power of the CHA 2 DS 2 -VASc score for stroke in AF patients. In addition, the H19 level showed a marginally significant association with all-cause mortality (HR 2.263, 95% CI: 0.889-5.760, P = 0.087), although it appeared to have no significant improvement for the CHA 2 DS 2 -VASc model for predicting all-cause mortality. Plasma expression of H19 was associated with stroke risk in AF patients and improved the discriminatory power of the CHA 2 DS 2 -VASc score. Therefore, lncRNA H19 served as an emerging non-invasive biomarker for stroke risk prediction in patients with AF.
Sections du résumé
BACKGROUND
BACKGROUND
The CHA 2 DS 2 -VASc score was initially applied to stratify stroke risk in patients with atrial fibrillation (AF) and was found to be effective in predicting all-cause mortality outcomes. To date, it is still unclear whether circulating long non-coding RNAs (lncRNAs) as emerging biomarkers, can improve the predictive power of the CHA 2 DS 2 -VASc score in stroke and all-cause mortality.
METHODS
METHODS
Candidate lncRNAs were screened by searching the literature and analyzing previous RNA sequencing results. After preliminary verification in 29 patients with AF, the final selected lncRNAs were evaluated by Cox proportional hazards regression in 192 patients to determine whether their relative expression levels were associated with stroke and all-cause mortality. The c-statistic, net reclassification improvement (NRI), and integrated discrimination improvement of the patients were calculated to evaluate the discrimination and reclassification power for stroke and all-cause mortality when adding lncRNA expression levels to the CHA 2 DS 2 -VASc score model.
RESULTS
RESULTS
Five plasma lncRNAs associated with stroke and all-cause mortality in AF patients were selected in our screening process. Patients with elevated H19 levels were found to have a higher risk of stroke (hazard ratio [HR] 3.264, 95% confidence interval [CI]: 1.364-7.813, P = 0.008). Adding the H19 expression level to the CHA 2 DS 2 -VASc score significantly improved the discrimination and reclassification power of the CHA 2 DS 2 -VASc score for stroke in AF patients. In addition, the H19 level showed a marginally significant association with all-cause mortality (HR 2.263, 95% CI: 0.889-5.760, P = 0.087), although it appeared to have no significant improvement for the CHA 2 DS 2 -VASc model for predicting all-cause mortality.
CONCLUSIONS
CONCLUSIONS
Plasma expression of H19 was associated with stroke risk in AF patients and improved the discriminatory power of the CHA 2 DS 2 -VASc score. Therefore, lncRNA H19 served as an emerging non-invasive biomarker for stroke risk prediction in patients with AF.
Identifiants
pubmed: 35869861
doi: 10.1097/CM9.0000000000002213
pii: 00029330-990000000-00087
pmc: PMC9481441
doi:
Substances chimiques
RNA, Long Noncoding
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1451-1458Informations de copyright
Copyright © 2022 The Chinese Medical Association, produced by Wolters Kluwer, Inc. under the CC-BY-NC-ND license.
Références
Camm AJ, Kirchhof P, Lip GY, et al. European Heart Rhythm Association, European Association for Cardio-Thoracic Surgery. Guidelines for the management of atrial fibrillation: the task force for the management of atrial fibrillation of the European Society of Cardiology (ESC). Eur Heart J 2010; 31:2369–2429. doi: 10.1093/eurheartj/ehq278.
doi: 10.1093/eurheartj/ehq278
Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke: the Framingham study. Stroke 1991; 22:983–988. doi: 10.1161/01.str.22.8.983.
doi: 10.1161/01.str.22.8.983
Benjamin EJ, Wolf PA, D’Agostino RB, Silbershatz H, Kannel WB, Levy D. Impact of atrial fibrillation on the risk of death: the Framingham heart study. Circulation 1998; 98:946–952. doi: 10.1161/01.cir.98.10.946.
doi: 10.1161/01.cir.98.10.946
Chugh SS, Havmoeller R, Narayanan K, Singh D, Rienstra M, Benjamin EJ, et al. Worldwide epidemiology of atrial fibrillation: a global burden of disease 2010 study. Circulation 2014; 129:837–847. doi: 10.1161/circulationaha.113.005119.
doi: 10.1161/circulationaha.113.005119
Hijazi Z, Oldgren J, Siegbahn A, Wallentin L. Application of biomarkers for risk stratification in patients with atrial fibrillation. Clin Chem 2017; 63:152–164. doi: 10.1373/clinchem.2016.255182.
doi: 10.1373/clinchem.2016.255182
Pamukcu B, Lip GY, Lane DA. Simplifying stroke risk stratification in atrial fibrillation patients: Implications of the CHA2DS2-VASc risk stratification scores. Age Ageing 2010; 39:533–535. doi: 10.1093/ageing/afq059.
doi: 10.1093/ageing/afq059
Schamroth Pravda M, Cohen Hagai K, Topaz G, Schamroth Pravda N, Makhoul N, Shuvy M, et al. Assessment of the CHA2DS2-VASc Score in predicting mortality and adverse cardiovascular outcomes of patients on hemodialysis. Am J Nephrol 2020; 51:635–640. doi: 10.1159/000508836.
doi: 10.1159/000508836
Vodošek Hojs N, Ekart R, Bevc S, Piko N, Hojs R. CHA2DS2-VASc Score as a predictor of cardiovascular and all-cause mortality in chronic kidney disease patients. Am J Nephrol 2021; 52:404–411. doi: 10.1159/000516121.
doi: 10.1159/000516121
Hijazi Z, Oldgren J, Lindbäck J, Alexander JH, Connolly SJ, Eikelboom JW, et al. A biomarker-based risk score to predict death in patients with atrial fibrillation: the ABC (age, biomarkers, clinical history) death risk score. Eur Heart J 2018; 39:477–485. doi: 10.1093/eurheartj/ehx584.
doi: 10.1093/eurheartj/ehx584
Fox CS, Parise H, D’Agostino RB Sr, Lloyd-Jones DM, Vasan RS, Wang TJ, et al. Parental atrial fibrillation as a risk factor for atrial fibrillation in offspring. JAMA 2004; 291:2851–2855. doi: 10.1001/jama.291.23.2851.
doi: 10.1001/jama.291.23.2851
Briasoulis A, Sharma S, Telila T, Mallikethi-Reddy S, Papageorgiou N, Oikonomou E, et al. MicroRNAs in atrial fibrillation. Curr Med Chem 2019; 26:855–863. doi: 10.2174/0929867324666170920151024.
doi: 10.2174/0929867324666170920151024
Dawson K, Wakili R, Ordög B, Clauss S, Chen Y, Iwasaki Y, et al. MicroRNA29: a mechanistic contributor and potential biomarker in atrial fibrillation. Circulation 2013; 127:e1–e28. doi: 10.1161/circulationaha.112.001207.
doi: 10.1161/circulationaha.112.001207
Luo X, Yang B, Nattel S. MicroRNAs and atrial fibrillation: mechanisms and translational potential. Nat Rev Cardiol 2015; 12:80–90. doi: 10.1038/nrcardio.2014.178.
doi: 10.1038/nrcardio.2014.178
Schulte C, Karakas M, Zeller T. microRNAs in cardiovascular disease - clinical application. Clin Chem Lab Med 2017; 55:687–704. doi: 10.1515/cclm-2016-0576.
doi: 10.1515/cclm-2016-0576
de Gonzalo-Calvo D, Iglesias-Gutiérrez E, Llorente-Cortés V. Epigenetic biomarkers and cardiovascular disease: circulating MicroRNAs. Rev Esp Cardiol (Engl Ed) 2017; 70:763–769. doi: 10.1016/j.rec.2017.05.013.
doi: 10.1016/j.rec.2017.05.013
da Silva AMG, de Araújo JNG, de Oliveira KM, Novaes AEM, Lopes MB, de Sousa JCV, et al. Circulating miRNAs in acute new-onset atrial fibrillation and their target mRNA network. J Cardiovasc Electrophysiol 2018; 29:1159–1166. doi: 10.1111/jce.13612.
doi: 10.1111/jce.13612
Stępień E, Costa MC, Kurc S, Drożdż A, Cortez-Dias N, Enguita FJ. The circulating non-coding RNA landscape for biomarker research: lessons and prospects from cardiovascular diseases. Acta Pharmacol Sin 2018; 39:1085–1099. doi: 10.1038/aps.2018.35.
doi: 10.1038/aps.2018.35
Wu N, Li J, Chen X, Xiang Y, Wu L, Li C, et al. Identification of long non-coding RNA and circular RNA expression profiles in atrial fibrillation. Heart Lung Circ 2020; 29:e157–e167. doi: 10.1016/j.hlc.2019.10.018.
doi: 10.1016/j.hlc.2019.10.018
Hsieh FY, Lavori PW. Sample-size calculations for the Cox proportional hazards regression model with nonbinary covariates. Control Clin Trials 2000; 21:552–560. doi: 10.1016/s0197-2456(00)00104-5.
doi: 10.1016/s0197-2456(00)00104-5
Camp RL, Dolled-Filhart M, Rimm DL. X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin Cancer Res 2004; 10:7252–7259. doi: 10.1158/1078-0432.Ccr-04-0713.
doi: 10.1158/1078-0432.Ccr-04-0713
Kang L, Chen W, Petrick NA, Gallas BD. Comparing two correlated C indices with right-censored survival outcome: a one-shot nonparametric approach. Stat Med 2015; 34:685–703. doi: 10.1002/sim.6370.
doi: 10.1002/sim.6370
Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction models. Med Decis Making 2006; 26:565–574. doi: 10.1177/0272989x06295361.
doi: 10.1177/0272989x06295361
Pachnis V, Belayew A, Tilghman SM. Locus unlinked to alpha-fetoprotein under the control of the murine raf and Rif genes. Proc Natl Acad Sci USA 1984; 81:5523–5527. doi: 10.1073/pnas.81.17.5523.
doi: 10.1073/pnas.81.17.5523
Shi X, Wei YT, Li H, Jiang T, Zheng XL, Yin K, et al. Long non-coding RNA H19 in atherosclerosis: what role? Mol Med 2020; 26:72doi: 10.1186/s10020-020-00196-w.
doi: 10.1186/s10020-020-00196-w
Rezaei M, Mokhtari MJ, Bayat M, Safari A, Dianatpuor M, Tabrizi R, et al. Long non-coding RNA H19 expression and functional polymorphism rs217727 are linked to increased ischemic stroke risk. BMC Neurol 2021; 21:54doi: 10.1186/s12883-021-02081-3.
doi: 10.1186/s12883-021-02081-3
Wang XM, Li XM, Song N, Zhai H, Gao XM, Yang YN. Long non-coding RNAs H19, MALAT1 and MIAT as potential novel biomarkers for diagnosis of acute myocardial infarction. Biomed Pharmacother 2019; 118:109208doi: 10.1016/j.biopha.2019.109208.
doi: 10.1016/j.biopha.2019.109208
Zhang BF, Jiang H, Chen J, Hu Q, Yang S, Liu XP, et al. LncRNA H19 ameliorates myocardial infarction-induced myocardial injury and maladaptive cardiac remodelling by regulating KDM3A. J Cell Mol Med 2020; 24:1099–1115. doi: 10.1111/jcmm.14846.
doi: 10.1111/jcmm.14846
Huang ZW, Tian LH, Yang B, Guo RM. Long noncoding RNA H19 acts as a competing endogenous RNA to mediate CTGF expression by sponging miR-455 in cardiac fibrosis. DNA Cell Biol 2017; 36:759–766. doi: 10.1089/dna.2017.3799.
doi: 10.1089/dna.2017.3799
Wijesurendra RS, Casadei B. Mechanisms of atrial fibrillation. Heart 2019; 105:1860–1867. doi: 10.1136/heartjnl-2018-314267.
doi: 10.1136/heartjnl-2018-314267
Hijazi Z, Oldgren J, Andersson U, Connolly SJ, Ezekowitz MD, Hohnloser SH, et al. Cardiac biomarkers are associated with an increased risk of stroke and death in patients with atrial fibrillation: a Randomized Evaluation of Long-term Anticoagulation Therapy (RE-LY) substudy. Circulation 2012; 125:1605–1616. doi: 10.1161/circulationaha.111.038729.
doi: 10.1161/circulationaha.111.038729
Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B, et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Europace 2016; 18:1609–1678. doi: 10.1093/europace/euw295.
doi: 10.1093/europace/euw295
Krittayaphong R, Chantrarat T, Rojjarekampai R, Jittham P, Sairat P, Lip GYH. Poor time in therapeutic range control is associated with adverse clinical outcomes in patients with non-valvular atrial fibrillation: a report from the nationwide COOL-AF registry. J Clin Med 2020; 9:1698doi: 10.3390/jcm9061698.
doi: 10.3390/jcm9061698