Responses of soil fauna communities to the individual and combined effects of multiple global change factors.

changed rainfall combined effects elevated CO2 individual effects meta-analysis nitrogen addition soil biota warming

Journal

Ecology letters
ISSN: 1461-0248
Titre abrégé: Ecol Lett
Pays: England
ID NLM: 101121949

Informations de publication

Date de publication:
Sep 2022
Historique:
revised: 11 05 2022
received: 28 03 2022
accepted: 20 06 2022
pubmed: 26 7 2022
medline: 1 9 2022
entrez: 25 7 2022
Statut: ppublish

Résumé

Soil fauna plays a key role in regulating biogeochemical cycles, but how multiple global change factors (GCFs) may affect faunal communities remains poorly studied. We conducted a meta-analysis using 1154 observations to evaluate the individual and combined effects of elevated CO

Identifiants

pubmed: 35875902
doi: 10.1111/ele.14068
doi:

Substances chimiques

Soil 0
Nitrogen N762921K75

Types de publication

Letter Meta-Analysis

Langues

eng

Sous-ensembles de citation

IM

Pagination

1961-1973

Subventions

Organisme : National Natural Science Foundation of China
ID : 31922052
Organisme : National Natural Science Foundation of China
ID : 32171641
Organisme : Spanish Ministry of Science
ID : PID2019-110521GB-I00
Organisme : Catalan Government
ID : SGR2017-1005
Organisme : Fundación Ramón Areces
ID : CIVP20A6621

Informations de copyright

© 2022 John Wiley & Sons Ltd.

Références

Aupic-Samain, A., Baldy, V., Delcourt, N., Krogh, P.H., Gauquelin, T., Fernandez, C. et al. (2021) Water availability rather than temperature control soil fauna community structure and prey-predator interactions. Functional Ecology, 35, 1550-1559.
Aupic-Samain, A., Santonja, M., Chomel, M., Pereira, S., Quer, E., Lecareux, C. et al. (2021) Soil biota response to experimental rainfall reduction depends on the dominant tree species in mature northern Mediterranean forests. Soil Biology and Biochemistry, 154, 108122.
Bates, D., Mächler, M., Bolker, B. & Walker, S. (2014) Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1-48.
Berch, S.M., Brockley, R.P., Battigelli, J.P., Hagerman, S. & Holl, B. (2006) Impacts of repeated fertilization on components of the soil biota under a young lodgepole pine stand in the interior of British Columbia. Canadian Journal of Forest Research, 36, 1415-1426.
Blankinship, J.C., Niklaus, P.A. & Hungate, B.A. (2011) A meta-analysis of responses of soil biota to global change. Oecologia, 165, 553-565.
Chen, J., Luo, Y., Xia, J., Jiang, L., Zhou, X., Lu, M. et al. (2015) Stronger warming effects on microbial abundances in colder regions. Scientific Reports, 5, 18032.
Cole, L., Buckland, S.M. & Bardgett, R.D. (2008) Influence of disturbance and nitrogen addition on plant and soil animal diversity in grassland. Soil Biology and Biochemistry, 40, 505-514.
Core Team, R. (2021) R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Coûteaux, M.-M. & Bolger, T. (2000) Interactions between atmospheric CO2 enrichment and soil fauna. Plant and Soil, 224, 123-134.
Evans, S.E. & Wallenstein, M.D. (2014) Climate change alters ecological strategies of soil bacteria. Ecology Letters, 17, 155-164.
Ferlian, O., Eisenhauer, N., Aguirrebengoa, M., Camara, M., Ramirez-Rojas, I., Santos, F. et al. (2018) Invasive earthworms erode soil biodiversity: a meta-analysis. Journal of Animal Ecology, 87, 162-172.
Ferreira, V., Castagneyrol, B., Koricheva, J., Gulis, V., Chauvet, E. & Graça, M.A.S. (2015) A meta-analysis of the effects of nutrient enrichment on litter decomposition in streams. Biological Reviews, 90, 669-688.
Filser, J., Faber, J.H., Tiunov, A.V., Brussaard, L., Frouz, J., De Deyn, G. et al. (2016) Soil fauna: key to new carbon models. The Soil, 2, 565-582.
Frouz, J. (2018) Effects of soil macro- and mesofauna on litter decomposition and soil organic matter stabilization. Geoderma, 332, 161-172.
Gan, H., Zak, D.R. & Hunter, M.D. (2013) Chronic nitrogen deposition alters the structure and function of detrital food webs in a northern hardwood ecosystem. Ecology, 23, 1311-1321.
Guo, X., Endler, A., Poll, C., Marhan, S. & Ruess, L. (2021) Independent effects of warming and altered precipitation pattern on nematode community structure in an arable field. Agriculture, Ecosystems & Environment, 316, 107467.
IPCC. (2014) Climate change 2014: synthesis report. Contribution of working groups I. IPCC, Geneva, Switzerland: II and III to the fifth assessment report of the intergovernmental panel on Climate Change.
Koricheva, J., Gurevitch, J. & Mengersen, K. (2013) Handbook of meta-analysis in ecology and evolution. Princeton and Oxford: Princeton University Press.
Liao, C. & Li, J. (2009) Re-evaluating the character and application of density-group index (DG). Biodiversity Science, 17, 127-134.
Lin, D., Xia, J. & Wan, S. (2010) Climate warming and biomass accumulation of terrestrial plants: a meta-analysis. New Phytologist, 188, 187-198.
Lindberg, N. & Bengtsson, J. (2006) Recovery of forest soil fauna diversity and composition after repeated summer droughts. Oikos, 114, 494-506.
Lindberg, N., Engtsson, J.B. & Persson, T. (2002) Effects of experimental irrigation and drought on the composition and diversity of soil Fauna in a coniferous stand. Journal of Applied Ecology, 39, 924-936.
Loranger, G.I., Pregitzer, K.S. & King, J.S. (2004) Elevated CO2 and O3t concentrations differentially affect selected groups of the fauna in temperate forest soils. Soil Biology and Biochemistry, 36, 1521-1524.
Matson, P., Lohse, K.A. & Hall, S.J. (2002) The globalization of nitrogen deposition: consequences for terrestrial ecosystems. Ambio, 113-119, 31.
Meehan, M.L., Barreto, C., Turnbull, M.S., Bradley, R.L., Bellenger, J.-P., Darnajoux, R. et al. (2020) Response of soil fauna to simulated global change factors depends on ambient climate conditions. Pedobiologia, 83, 150672.
Mueller, K.E., Blumenthal, D.M., Carrillo, Y., Cesarz, S., Ciobanu, M., Hines, J. et al. (2016) Elevated CO2 and warming shift the functional composition of soil nematode communities in a semiarid grassland. Soil Biology and Biochemistry, 103, 46-51.
Nielsen, U.N. & Ball, B.A. (2015) Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi-arid ecosystems. Global Change Biology, 21, 1407-1421.
Norby, R.J., Ledford, J., Reilly, C.D., Miller, N.E. & O'Neill, E.G. (2004) Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment. Proceedings of the National Academy of Sciences of the United States of America, 101, 9689-9693.
Peguero, G., Folch, E., Liu, L., Ogaya, R. & Peñuelas, J. (2021) Divergent effects of drought and nitrogen deposition on microbial and arthropod soil communities in a Mediterranean forest. European Journal of Soil Biology, 103, 103275.
Peguero, G., Sol, D., Arnedo, M., Petersen, H., Salmon, S., Ponge, J.-F. et al. (2019) Fast attrition of springtail communities by experimental drought and richness-decomposition relationships across. Europe, 25, 2727-2738.
Peng, Y., Fornara, D.A., Yue, K., Peng, X., Peng, C., Wu, Q. et al. (2021) Globally limited individual and combined effects of multiple global change factors on allometric biomass partitioning. Global Ecology and Biogeography, 31, 454-469.
Peng, Y., Holmstrup, M., Schmidt, I.K., De Schrijver, A., Schelfhout, S., Heděnec, P. et al. (2022) Litter quality, mycorrhizal association, and soil properties regulate effects of tree species on the soil fauna community. Geoderma, 407, 115570.
Pollierer, M.M., Langel, R., Körner, C., Maraun, M. & Scheu, S. (2007) The underestimated importance of belowground carbon input for forest soil animal food webs. Ecology Letters, 10, 729-736.
Rangwala, I., Sinsky, E. & Miller, J.R. (2013) Amplified warming projections for high altitude regions of the northern hemisphere mid-latitudes from CMIP5 models. Environmental Research Letters, 8, 024040.
Rillig, M.C., Ryo, M., Lehmann, A., Aguilar-Trigueros, C.A., Buchert, S., Wulf, A. et al. (2019) The role of multiple global change factors in driving soil functions and microbial biodiversity. Science, 366, 886-890.
Schmidt, M.W.I., Torn, M.S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I.A. et al. (2011) Persistence of soil organic matter as an ecosystem property. Nature, 478, 49-56.
Shaw, E.A., Boot, C.M., Moore, J.C., Wall, D.H. & Baron, J.S. (2019) Long-term nitrogen addition shifts the soil nematode community to bacterivore-dominated and reduces its ecological maturity in a subalpine forest. Soil Biology and Biochemistry, 130, 177-184.
Sylvain, Z.A., Wall, D.H., Cherwin, K.L., Peters, D.P., Reichmann, L.G. & Sala, O.E. (2014) Soil animal responses to moisture availability are largely scale, not ecosystem dependent: insight from a cross-site study. Global Change Biology, 20, 2631-2643.
Tan, B., Yin, R., Zhang, J., Xu, Z., Liu, Y., He, S. et al. (2021) Temperature and moisture modulate the contribution of soil Fauna to litter decomposition via different pathways. Ecosystems, 24, 1142-1156.
van Veen, J.A., Liljeroth, E., Lekkerkerk, L.J.A. & van de Geijn, S.C. (1991) Carbon fluxes in plant-soil systems at elevated atmospheric CO2 levels. Ecological Applications, 1, 175-181.
Wagg, C., Bender, S.F., Widmer, F. & van der Heijden, M.G.A. (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences, 111, 5266-5270.
Wall, D.H., Nielsen, U.N. & Six, J. (2015) Soil biodiversity and human health. Nature, 528, 69-76.
Wu, Q., Yue, K., Wang, X., Ma, Y. & Li, Y. (2020) Differential responses of litter decomposition to warming, elevated CO2, and changed precipitation regime. Plant and Soil, 455, 155-169.
Xu, G.-L., Fu, S.-L., Schleppi, P. & Li, M.-H. (2013) Responses of soil collembola to long-term atmospheric CO2 enrichment in a mature temperate forest. Environmental Pollution, 173, 23-28.
Xu, G.-L., Mo, J.-M., Fu, S.-L., Per, G., Zhou, G.-Y. & Xue, J.-H. (2007) Response of soil fauna to simulated nitrogen deposition: a nursery experiment in subtropical China. Journal of Environmental Sciences, 19, 603-609.
Yang, G., Wagg, C., Veresoglou, S.D., Hempel, S. & Rillig, M.C. (2018) How soil biota drive ecosystem stability. Trends in Plant Science, 23, 1057-1067.
Yue, K., Fornara, D.A., Yang, W., Peng, Y., Peng, C., Liu, Z. et al. (2017) Influence of multiple global change drivers on terrestrial carbon storage: additive effects are common. Ecology Letters, 20, 663-672.
Yue, K., Jarvie, S., Senior, A.M., Van Meerbeek, K., Peng, Y., Ni, X. et al. (2020) Changes in plant diversity and its relationship with productivity in response to nitrogen addition, warming and increased rainfall. Oikos, 129, 939-952.
Yue, K., Peng, C., Yang, W., Peng, Y., Fang, J. & Wu, F. (2015) Study type and plant litter identity modulating the response of litter decomposition to warming, elevated CO2, and elevated O3: a meta-analysis. Journal of Geophysical Research: Biogeosciences, 120, 441-451.
Yue, K., Peng, Y., Fornara, D.A., Van Meerbeek, K., Vesterdal, L., Yang, W. et al. (2019) Responses of nitrogen concentrations and pools to multiple environmental change drivers: a meta-analysis across terrestrial ecosystems. Global Ecology and Biogeography, 28, 690-724.
Yue, K., Peng, Y., Peng, C., Yang, W., Peng, X. & Wu, F. (2016) Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: a meta-analysis. Scientific Reports, 6, 19895.
Zak, D.R., Holmes, W.E., Burton, A.J., Pregitzer, K.S. & Talhelm, A.F. (2008) Simulated atmospheric NO3− deposition increases soil organic matter by slowing decomposition. Ecological Applications, 18, 2016-2027.
Zhou, Z., Wang, C. & Luo, Y. (2020) Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nature Communications, 11, 3072.

Auteurs

Yan Peng (Y)

Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China.

Josep Peñuelas (J)

CREAF, E08193, Cerdanyola del Vallès, Catalonia, Spain.
CSIC, Global Ecology Unit, CREAF-CSIC-UAB, E08193, Cerdanyola del Vallès, Catalonia, Spain.

Lars Vesterdal (L)

Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark.

Kai Yue (K)

Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China.

Guille Peguero (G)

CREAF, E08193, Cerdanyola del Vallès, Catalonia, Spain.
CSIC, Global Ecology Unit, CREAF-CSIC-UAB, E08193, Cerdanyola del Vallès, Catalonia, Spain.

Dario A Fornara (DA)

Davines Group, Rodale Institute European Regenerative Organic Center (EROC), Parma, Italy.

Petr Heděnec (P)

Institute of Tropical Biodiversity and Sustainable Development, University Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia.

Christina Steffens (C)

Institute of Soil Science, Center for Earth System Research and Sustainability (CEN), University of Hamburg, Hamburg, Germany.

Fuzhong Wu (F)

Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages
Humans Climate Change Health Personnel Surveys and Questionnaires Medical Oncology
Lakes Salinity Archaea Bacteria Microbiota

Classifications MeSH