Sunlight-driven nitrate loss records Antarctic surface mass balance.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
25 07 2022
25 07 2022
Historique:
received:
28
01
2022
accepted:
06
07
2022
entrez:
25
7
2022
pubmed:
26
7
2022
medline:
28
7
2022
Statut:
epublish
Résumé
Standard proxies for reconstructing surface mass balance (SMB) in Antarctic ice cores are often inaccurate or coarsely resolved when applied to more complicated environments away from dome summits. Here, we propose an alternative SMB proxy based on photolytic fractionation of nitrogen isotopes in nitrate observed at 114 sites throughout East Antarctica. Applying this proxy approach to nitrate in a shallow core drilled at a moderate SMB site (Aurora Basin North), we reconstruct 700 years of SMB changes that agree well with changes estimated from ice core density and upstream surface topography. For the under-sampled transition zones between dome summits and the coast, we show that this proxy can provide past and present SMB values that reflect the immediate local environment and are derived independently from existing techniques.
Identifiants
pubmed: 35879324
doi: 10.1038/s41467-022-31855-7
pii: 10.1038/s41467-022-31855-7
pmc: PMC9314437
doi:
Substances chimiques
Nitrates
0
Nitrogen Isotopes
0
Nitrogen Oxides
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
4274Informations de copyright
© 2022. The Author(s).
Références
Fretwell, P. et al. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7, 375–393 (2013).
doi: 10.5194/tc-7-375-2013
Juckes, M. N., James, I. N. & Blackburn, M. The influence of Antarctica on the momentum budget of the southern extratropics. Q. J. R. Meteorological Soc. 120, 1017–1044 (1994).
doi: 10.1002/qj.49712051811
van den Broeke, M. R. On the role of Antarctica as heat sink for the global atmosphere. J. Phys. IV Fr. 121, 115–124 (2004).
doi: 10.1051/jp4:2004121006
Bronselaer, B. et al. Change in future climate due to Antarctic meltwater. Nature 564, 53–58 (2018).
pubmed: 30455421
doi: 10.1038/s41586-018-0712-z
Starr, A. et al. Antarctic icebergs reorganize ocean circulation during Pleistocene glacials. Nature 589, 236–241 (2021).
pubmed: 33442043
doi: 10.1038/s41586-020-03094-7
IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R. K. Pachauri and L. A. Meyer (eds.)]. 151 (2014).
Shepherd, A. et al. Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature 558, 219–222 (2018).
doi: 10.1038/s41586-018-0179-y
Martín-Español, A. et al. Spatial and temporal Antarctic Ice Sheet mass trends, glacio-isostatic adjustment, and surface processes from a joint inversion of satellite altimeter, gravity, and GPS data. J. Geophys. Res. Earth Surf. 121, 182–200 (2016).
pubmed: 27134805
pmcid: 4845667
doi: 10.1002/2015JF003550
Stauffer, B., Flückiger, J., Wolff, E. & Barnes, P. The EPICA deep ice cores: first results and perspectives. Ann. Glaciol. 39, 93–100 (2004).
doi: 10.3189/172756404781814500
Parrenin, F. et al. 1-D-ice flow modelling at EPICA Dome C and Dome Fuji, East Antarctica. Climate 3, 243–259 (2007).
Howat, I. M., Porter, C., Smith, B. E., Noh, M.-J. & Morin, P. The reference elevation model of Antarctica. Cryosphere 13, 665–674 (2019).
doi: 10.5194/tc-13-665-2019
Favier, V. et al. An updated and quality controlled surface mass balance dataset for Antarctica. Cryosphere 7, 583–597 (2013).
doi: 10.5194/tc-7-583-2013
Agosta, C. et al. Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes. Cryosphere 13, 281–296 (2019).
doi: 10.5194/tc-13-281-2019
Agosta, C. et al. A 40-year accumulation dataset for Adelie Land, Antarctica and its application for model validation. Clim. Dyn. 38, 75–86 (2012).
doi: 10.1007/s00382-011-1103-4
Gallée, H. et al. Transport of snow by the wind: a comparison between observations in Adélie Land, Antarctica, and simulations made with the regional climate model MAR. Bound. Layer. Meteorol. 146, 133–147 (2013).
doi: 10.1007/s10546-012-9764-z
Vimeux, F., Cuffey, K. M. & Jouzel, J. New insights into Southern Hemisphere temperature changes from Vostok ice cores using deuterium excess correction. Earth Planet. Sci. Lett. 203, 829–843 (2002).
doi: 10.1016/S0012-821X(02)00950-0
Cauquoin, A. et al. Comparing past accumulation rate reconstructions in East Antarctic ice cores using 10Be, water isotopes and CMIP5-PMIP3 models. Climate 11, 355–367 (2015).
Thomas, E. R. et al. Regional Antarctic snow accumulation over the past 1000 years. Climate 13, 1491–1513 (2017).
Freyer, H. D., Kobel, K., Delmas, R. J., Kley, D. & Legrand, M. R. First results of 15N/14N ratios in nitrate from alpine and polar ice cores. Tellus B 48, 93–105 (1996).
doi: 10.3402/tellusb.v48i1.15671
Legrand, M., Wolff, E., Wagenbach, D. & Jacka, T. Antarctic aerosol and snowfall chemistry: implications for deep Antarctic ice-core chemistry. Ann. Glaciol. 29, 66–72 (1999). Vol 29, 1999.
doi: 10.3189/172756499781821094
Wolff, E. Nitrate in polar ice. In Ice core studies of global biogeochemical cycles (Springer-Verlag, 1995).
Röthlisberger, R. et al. Nitrate in Greenland and Antarctic ice cores: a detailed description of post-depositional processes. Ann. Glaciol. 35, 209–216 (2002).
doi: 10.3189/172756402781817220
Frey, M., Savarino, J., Morin, S., Erbland, J. & Martins, J. Photolysis imprint in the nitrate stable isotope signal in snow and atmosphere of East Antarctica and implications for reactive nitrogen cycling. Atmos. Chem. Phys. 9, 8681–8696 (2009).
doi: 10.5194/acp-9-8681-2009
Erbland, J. et al. Air-snow transfer of nitrate on the East Antarctic Plateau - Part 1: Isotopic evidence for a photolytically driven dynamic equilibrium in summer. Atmos. Chem. Phys. 13, 6403–6419 (2013).
doi: 10.5194/acp-13-6403-2013
Shi, G. et al. Investigation of post-depositional processing of nitrate in East Antarctic snow: isotopic constraints on photolytic loss, re-oxidation, and source inputs. Atmos. Chem. Phys. 15, 9435–9453 (2015).
doi: 10.5194/acp-15-9435-2015
Grannas, A. et al. An overview of snow photochemistry: evidence, mechanisms and impacts. Atmos. Chem. Phys. 7, 4329–4373 (2007).
doi: 10.5194/acp-7-4329-2007
Berhanu, T. et al. Laboratory study of nitrate photolysis in Antarctic snow. II. Isotopic effects and wavelength dependence. J. Chem. Phys. 140, 244306 (2014).
Noro, K. et al. Spatial variation of isotopic compositions of snowpack nitrate related to post-depositional processes in eastern Dronning Maud Land, East Antarctica. Geochemical J. 52, e7–e14 (2018).
doi: 10.2343/geochemj.2.0519
Shi, G. et al. Isotope fractionation of nitrate during volatilization in snow: a field investigation in Antarctica. Geophys. Res. Lett. 46, 3287–3297 (2019).
doi: 10.1029/2019GL081968
Noro, K. & Takenaka, N. Post-depositional loss of nitrate and chloride in Antarctic snow by photolysis and sublimation: a field investigation. Polar 39, (2020). https://polarresearch.net/index.php/polar/article/view/5146 .
Winton, V. H. L. et al. Deposition, recycling, and archival of nitrate stable isotopes between the air–snow interface: comparison between Dronning Maud Land and Dome C, Antarctica. Atmos. Chem. Phys. 20, 5861–5885 (2020).
doi: 10.5194/acp-20-5861-2020
Zatko, M. C. et al. The influence of snow grain size and impurities on the vertical profiles of actinic flux and associated NOx emissions on the Antarctic and Greenland ice sheets. Atmos. Chem. Phys. 13, 3547–3567 (2013).
doi: 10.5194/acp-13-3547-2013
Zatko, M., Geng, L., Alexander, B., Sofen, E. & Klein, K. The impact of snow nitrate photolysis on boundary layer chemistry and the recycling and redistribution of reactive nitrogen across Antarctica and Greenland in a global chemical transport model. Atmos. Chem. Phys. 16, 2819–2842 (2016).
doi: 10.5194/acp-16-2819-2016
France, J. L. et al. Snow optical properties at Dome C (Concordia), Antarctica; implications for snow emissions and snow chemistry of reactive nitrogen. Atmos. Chem. Phys. 11, 9787–9801 (2011).
doi: 10.5194/acp-11-9787-2011
Wolff, E., Jones, A., Martin, T. & Grenfell, T. Modelling photochemical NOX production and nitrate loss in the upper snowpack of Antarctica. Geophys. Res. Lett. 29, 5-1-5-4 (2002).
Erbland, J. et al. Air-snow transfer of nitrate on the East Antarctic Plateau - Part 2: An isotopic model for the interpretation of deep ice-core records. Atmos. Chem. Phys. 15, 12079–12113 (2015).
doi: 10.5194/acp-15-12079-2015
Jiang, S. et al. Nitrate preservation in snow at Dome A, East Antarctica from ice core concentration and isotope records. Atmos. Environ. 213, 405–412 (2019).
doi: 10.1016/j.atmosenv.2019.06.031
Geng, L. et al. Effects of postdepositional processing on nitrogen isotopes of nitrate in the Greenland Ice Sheet Project 2 ice core. Geophys. Res. Lett. 42, 5346–5354 (2015).
doi: 10.1002/2015GL064218
Savarino, J., Kaiser, J., Morin, S., Sigman, D. & Thiemens, M. Nitrogen and oxygen isotopic constraints on the origin of atmospheric nitrate in coastal Antarctica. Atmos. Chem. Phys. 7, 1925–1945 (2007).
doi: 10.5194/acp-7-1925-2007
Frezzotti, M., Gandolfi, S., Marca, F. L. & Urbini, S. Snow dunes and glazed surfaces in Antarctica: new field and remote-sensing data. Ann. Glaciol. 34, 81–88 (2002).
doi: 10.3189/172756402781817851
Libois, Q., Picard, G., Arnaud, L., Morin, S. & Brun, E. Modeling the impact of snow drift on the decameter-scale variability of snow properties on the Antarctic Plateau. J. Geophys. Res. Atmos. 119, 11662–11681 (2014).
doi: 10.1002/2014JD022361
Picard, G., Arnaud, L., Caneill, R., Lefebvre, E. & Lamare, M. Observation of the process of snow accumulation on the Antarctic Plateau by time lapse laser scanning. Cryosphere 13, 1983–1999 (2019).
doi: 10.5194/tc-13-1983-2019
Eisen, O. et al. Ground-based measurements of spatial and temporal variability of snow accumulation in East Antarctica. Rev. Geophys. 46, RG2001 (2008).
Wille, J. D. et al. Antarctic atmospheric river climatology and precipitation impacts. J. Geophys. Res. Atmospheres 126, e2020JD033788 (2021).
Turner, J. et al. The dominant role of extreme precipitation events in Antarctic snowfall variability. Geophys. Res. Lett. 46, 3502–3511 (2019).
doi: 10.1029/2018GL081517
Gautier, E., Savarino, J., Erbland, J., Lanciki, A. & Possenti, P. Variability of sulfate signal in ice core records based on five replicate cores. Clim 12, 103–113 (2016).
Mouginot, J., Rignot, E. & Scheuchl, B. Continent-wide, interferometric SAR phase, mapping of Antarctic ice velocity. Geophys. Res. Lett. 46, 9710–9718 (2019).
doi: 10.1029/2019GL083826
Servettaz, A., Landais, A. & Orsi, A. Two thousand years of temperature variability on the lower East Antarctic Plateau inferred from the analysis of stable isotopes of water and inert gases in the Aurora Basin North ice core (Université Paris-Saclay, 2021).
Le Meur, E. et al. Spatial and temporal distributions of surface mass balance between Concordia and Vostok stations, Antarctica, from combined radar and ice core data: first results and detailed error analysis. Cryosphere 12, 1831–1850 (2018).
doi: 10.5194/tc-12-1831-2018
Stenni, B. et al. Eight centuries of volcanic signal and climate change at Talos Dome (East Antarctica). J. Geophys. Res. Atmos. 107, 13 (2002).
doi: 10.1029/2000JD000317
Frezzotti, M., Scarchilli, C., Becagli, S., Proposito, M. & Urbini, S. A synthesis of the Antarctic surface mass balance during the last 800 yr. Cryosphere 7, 303–319 (2013).
doi: 10.5194/tc-7-303-2013
Urbini, S. et al. Historical behaviour of Dome C and Talos Dome (East Antarctica) as investigated by snow accumulation and ice velocity measurements. Glob. Planet. Change 60, 576–588 (2008).
doi: 10.1016/j.gloplacha.2007.08.002
Philippe, M. et al. Ice core evidence for a 20th century increase in surface mass balance in coastal Dronning Maud Land, East Antarctica. Cryosphere 10, 2501–2516 (2016).
doi: 10.5194/tc-10-2501-2016
Kausch, T. et al. Impact of coastal East Antarctic ice rises on surface mass balance: insights from observations and modeling. Cryosphere 14, 3367–3380 (2020).
doi: 10.5194/tc-14-3367-2020
Neubauer, C. et al. Stable isotope analysis of intact oxyanions using electrospray quadrupole-orbitrap mass spectrometry. Anal. Chem. 92, 3077–3085 (2020).
pubmed: 32011865
doi: 10.1021/acs.analchem.9b04486
Meusinger, C., Berhanu, T. A., Erbland, J., Savarino, J. & Johnson, M. S. Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry. J. Chem. Phys. 140, 244305 (2014).
pubmed: 24985636
doi: 10.1063/1.4882898
Chu, L. & Anastasio, C. Quantum yields of hydroxyl radical and nitrogen dioxide from the photolysis of nitrate on ice. J. Phys. Chem. A 107, 9594–9602 (2003).
doi: 10.1021/jp0349132
Benedict, K. B., McFall, A. S. & Anastasio, C. Quantum yield of nitrite from the photolysis of aqueous nitrate above 300 nm. Environ. Sci. Technol. 51, 4387–4395 (2017).
pubmed: 28340298
doi: 10.1021/acs.est.6b06370
Kaiser, J., Hastings, M. G., Houlton, B. Z., Röckmann, T. & Sigman, D. M. Triple oxygen isotope analysis of nitrate Using the denitrifier method and thermal decomposition of N2O. Anal. Chem. 79, 599–607 (2007).
pubmed: 17222025
doi: 10.1021/ac061022s
Morin, S. et al. Comprehensive isotopic composition of atmospheric nitrate in the Atlantic Ocean boundary layer from 65 degrees S to 79 degrees N. J. Geophys. Res. Atmospheres 114, D05303 (2009).
Sigman, D. M. et al. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal. Chem. 73, 4145–4153 (2001).
pubmed: 11569803
doi: 10.1021/ac010088e
Casciotti, K. L., Sigman, D. M., Hastings, M. G., Böhlke, J. K. & Hilkert, A. Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Anal. Chem. 74, 4905–4912 (2002).
pubmed: 12380811
doi: 10.1021/ac020113w
Baertschi, P. Absolute 18O content of standard mean ocean water. Earth Planet. Sci. Lett. 31, 341–344 (1976).
doi: 10.1016/0012-821X(76)90115-1
Mariotti, A. Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements. Nature 303, 685–687 (1983).
doi: 10.1038/303685a0
Pourchet, M. et al. Distribution and fall-out of 137Cs and other radionuclides over Antarctica. J. Glaciol. 43, 435–445 (1997).
doi: 10.1017/S0022143000035024
Ding, M. et al. Spatial variability of surface mass balance along a traverse route from Zhongshan station to Dome A, Antarctica. J. Glaciol. 57, 658–666 (2011).
doi: 10.3189/002214311797409820
Verfaillie, D. et al. Snow accumulation variability derived from radar and firn core data along a 600 km transect in Adelie Land, East Antarctic plateau. Cryosphere 6, 1345–1358 (2012).
doi: 10.5194/tc-6-1345-2012
Hoshina, Y., Fujita, K., Iizuka, Y. & Motoyama, H. Inconsistent relationships between major ions and water stable isotopes in Antarctic snow under different accumulation environments. Polar Sci. 10, 1–10 (2016).
doi: 10.1016/j.polar.2015.12.003
Ding, M. et al. Re-assessment of recent (2008–2013) surface mass balance over Dome Argus, Antarctica. Polar Res. 35, 26133 (2016).
Ekaykin, A. A. et al. Underestimation of snow accumulation rate in Central Antarctica (Vostok Station) derived from stake measurements. Russian Meteorol. Hydrol. 45, 132–140 (2020).
doi: 10.3103/S1068373920020090
Sommer, S., Wagenbach, D., Mulvaney, R. & Fischer, H. Glacio-chemical study spanning the past 2 kyr on three ice cores from Dronning Maud Land, Antarctica: 2. Seasonally resolved chemical records. J. Geophys. Res. Atmos. 105, 29423–29433 (2000).
doi: 10.1029/2000JD900450
Richter, A. et al. Surface mass balance models vs. stake observations: a comparison in the Lake Vostok region, central East Antarctica. Front. Earth Sci. 9, 388 (2021).
doi: 10.3389/feart.2021.669977
Akers, P. D. et al. Spatial variability in sub-photic zone nitrate δ15N and surface mass balance across East Antarctica. Pangaea, https://doi.org/10.1594/PANGAEA.941480 (2022).
Akers, P. D. et al. Nitrate δ15N values and ice density-based surface mass balance from the ABN1314-103 ice core, Aurora Basin North, Antarctica. Pangaea, https://doi.org/10.1594/PANGAEA.941491 (2022).
Akers, P. D. pete-d-akers/scadi-d15N-SMB: SCADI nitrate and surface mass balance analysis v1.1. Zenodo. https://doi.org/10.5281/zenodo.6806404 (2022).
Hui, F. et al. Mapping blue-ice areas in Antarctica using ETM+ and MODIS data. Ann. Glaciol. 55, 129–137 (2014).
doi: 10.3189/2014AoG66A069