Prolonged breastfeeding protects from obesity by hypothalamic action of hepatic FGF21.
Journal
Nature metabolism
ISSN: 2522-5812
Titre abrégé: Nat Metab
Pays: Germany
ID NLM: 101736592
Informations de publication
Date de publication:
07 2022
07 2022
Historique:
received:
13
03
2021
accepted:
08
06
2022
entrez:
25
7
2022
pubmed:
26
7
2022
medline:
28
7
2022
Statut:
ppublish
Résumé
Early-life determinants are thought to be a major factor in the rapid increase of obesity. However, while maternal nutrition has been extensively studied, the effects of breastfeeding by the infant on the reprogramming of energy balance in childhood and throughout adulthood remain largely unknown. Here we show that delayed weaning in rat pups protects them against diet-induced obesity in adulthood, through enhanced brown adipose tissue thermogenesis and energy expenditure. In-depth metabolic phenotyping in this rat model as well as in transgenic mice reveals that the effects of prolonged suckling are mediated by increased hepatic fibroblast growth factor 21 (FGF21) production and tanycyte-controlled access to the hypothalamus in adulthood. Specifically, FGF21 activates GABA-containing neurons expressing dopamine receptor 2 in the lateral hypothalamic area and zona incerta. Prolonged breastfeeding thus constitutes a protective mechanism against obesity by affecting long-lasting physiological changes in liver-to-hypothalamus communication and hypothalamic metabolic regulation.
Identifiants
pubmed: 35879461
doi: 10.1038/s42255-022-00602-z
pii: 10.1038/s42255-022-00602-z
pmc: PMC9314260
doi:
Substances chimiques
fibroblast growth factor 21
0
Fibroblast Growth Factors
62031-54-3
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
901-917Commentaires et corrections
Type : CommentIn
Type : CommentIn
Informations de copyright
© 2022. The Author(s).
Références
Barker, D. J. The developmental origins of adult disease. Eur. J. Epidemiol. 18, 733–736 (2003).
pubmed: 12974544
doi: 10.1023/A:1025388901248
Lukaszewski, M. A., Eberle, D., Vieau, D. & Breton, C. Nutritional manipulations in the perinatal period program adipose tissue in offspring. Am. J. Physiol. Endocrinol. Metab. 305, E1195–E1207 (2013).
pubmed: 24045869
doi: 10.1152/ajpendo.00231.2013
Liang, X. et al. Maternal high-fat diet during lactation impairs thermogenic function of brown adipose tissue in offspring mice. Sci. Rep. 6, 34345 (2016).
pubmed: 27686741
pmcid: 5043374
doi: 10.1038/srep34345
Tsuduki, T., Kitano, Y., Honma, T., Kijima, R. & Ikeda, I. High dietary fat intake during lactation promotes development of diet-induced obesity in male offspring of mice. J. Nutr. Sci. Vitaminol. 59, 384–392 (2013).
pubmed: 24418872
doi: 10.3177/jnsv.59.384
Butruille, L. et al. Maternal high-fat diet during suckling programs visceral adiposity and epigenetic regulation of adipose tissue stearoyl-CoA desaturase-1 in offspring. Int. J. Obes. 43, 2381–2393 (2019).
doi: 10.1038/s41366-018-0310-z
Vogt, M. C. et al. Neonatal insulin action impairs hypothalamic neurocircuit formation in response to maternal high-fat feeding. Cell 156, 495–509 (2014).
pubmed: 24462248
pmcid: 4101521
doi: 10.1016/j.cell.2014.01.008
Lopez, M. et al. A possible role of neuropeptide Y, agouti-related protein and leptin receptor isoforms in hypothalamic programming by perinatal feeding in the rat. Diabetologia 48, 140–148 (2005).
pubmed: 15616803
doi: 10.1007/s00125-004-1596-z
Lopez, M. et al. Perinatal overfeeding in rats results in increased levels of plasma leptin but unchanged cerebrospinal leptin in adulthood. Int J. Obes. 31, 371–377 (2007).
doi: 10.1038/sj.ijo.0803425
Caron, E., Ciofi, P., Prevot, V. & Bouret, S. G. Alteration in neonatal nutrition causes perturbations in hypothalamic neural circuits controlling reproductive function. J. Neurosci. 32, 11486–11494 (2012).
pubmed: 22895731
pmcid: 3460805
doi: 10.1523/JNEUROSCI.6074-11.2012
Owen, C. G., Martin, R. M., Whincup, P. H., Smith, G. D. & Cook, D. G. Effect of infant feeding on the risk of obesity across the life course: a quantitative review of published evidence. Pediatrics 115, 1367–1377 (2005).
pubmed: 15867049
doi: 10.1542/peds.2004-1176
Bergmann, K. E. et al. Early determinants of childhood overweight and adiposity in a birth cohort study: role of breast-feeding. Int. J. Obes. Relat. Metab. Disord. 27, 162–172 (2003).
pubmed: 12586995
doi: 10.1038/sj.ijo.802200
McCrory, C. & Layte, R. Breastfeeding and risk of overweight and obesity at nine years of age. Soc. Sci. Med. 75, 323–330 (2012).
pubmed: 22560796
doi: 10.1016/j.socscimed.2012.02.048
Gibson, L. A., Hernandez Alava, M., Kelly, M. P. & Campbell, M. J. The effects of breastfeeding on childhood BMI: a propensity score matching approach. J. Public Health 39, e152–e160 (2017).
Beyerlein, A., Toschke, A. M. & von Kries, R. Breastfeeding and childhood obesity: shift of the entire BMI distribution or only the upper parts? Obesity 16, 2730–2733 (2008).
pubmed: 18846050
doi: 10.1038/oby.2008.432
Oddy, W. H. & Sherriff, J. L. Breastfeeding, body mass index, asthma and atopy in children. Asia Pac. J. Public Health 15, S15–S17 (2003).
pubmed: 18924535
doi: 10.1177/101053950301500S05
Jiang, M. & Foster, E. M. Duration of breastfeeding and childhood obesity: a generalized propensity score approach. Health Serv. Res. 48, 628–651 (2013).
pubmed: 22924637
doi: 10.1111/j.1475-6773.2012.01456.x
Kramer, M. S. et al. Effects of prolonged and exclusive breastfeeding on child height, weight, adiposity, and blood pressure at age 6.5y: evidence from a large randomized trial. Am. J. Clin. Nutr. 86, 1717–1721 (2007).
pubmed: 18065591
doi: 10.1093/ajcn/86.5.1717
Palou, M., Pico, C. & Palou, A. Leptin as a breast milk component for the prevention of obesity. Nutr. Rev. 76, 875–892 (2018).
pubmed: 30285146
Obermann-Borst, S. A. et al. Duration of breastfeeding and gender are associated with methylation of the LEPTIN gene in very young children. Pediatr. Res. 74, 344–349 (2013).
pubmed: 23884163
doi: 10.1038/pr.2013.95
Folgueira, C. et al. Uroguanylin improves leptin responsiveness in diet-induced obese mice. Nutrients 11, 752 (2019).
pmcid: 6520813
doi: 10.3390/nu11040752
Lima Nda, S. et al. Early weaning causes undernutrition for a short period and programmes some metabolic syndrome components and leptin resistance in adult rat offspring. Br. J. Nutr. 105, 1405–1413 (2011).
pubmed: 21272398
doi: 10.1017/S0007114510005064
Izquierdo, A. G., Crujeiras, A. B., Casanueva, F. F. & Carreira, M. C. Leptin, obesity, and leptin resistance: where are we 25 years later? Nutrients 11, 2704 (2019).
pmcid: 6893721
doi: 10.3390/nu11112704
Hondares, E. et al. Hepatic FGF21 expression is induced at birth via PPARα in response to milk intake and contributes to thermogenic activation of neonatal brown fat. Cell Metab. 11, 206–212 (2010).
pubmed: 20197053
pmcid: 2847690
doi: 10.1016/j.cmet.2010.02.001
Tillman, E. J. & Rolph, T. FGF21: an emerging therapeutic target for non-alcoholic steatohepatitis and related metabolic diseases. Front Endocrinol. 11, 601290 (2020).
doi: 10.3389/fendo.2020.601290
Stewart, S. A. et al. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA 9, 493–501 (2003).
pubmed: 12649500
pmcid: 1370415
doi: 10.1261/rna.2192803
Gangarossa, G. & Luquet, S. Hypothalamic regulation of glucose homeostasis: is the answer in the matrix? Cell Metab. 32, 701–703 (2020).
pubmed: 33147483
doi: 10.1016/j.cmet.2020.10.003
Garcia-Caceres, C. et al. Role of astrocytes, microglia, and tanycytes in brain control of systemic metabolism. Nat. Neurosci. 22, 7–14 (2019).
pubmed: 30531847
doi: 10.1038/s41593-018-0286-y
Rahmouni, K. Cardiovascular regulation by the arcuate nucleus of the hypothalamus: neurocircuitry and signaling systems. Hypertension 67, 1064–1071 (2016).
pubmed: 27045026
doi: 10.1161/HYPERTENSIONAHA.115.06425
Timper, K. & Bruning, J. C. Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity. Dis. Model Mech. 10, 679–689 (2017).
pubmed: 28592656
pmcid: 5483000
doi: 10.1242/dmm.026609
Folgueira, C. et al. Hypothalamic dopamine signaling regulates brown fat thermogenesis. Nat. Metab. 1, 811–829 (2019).
pubmed: 31579887
pmcid: 6774781
doi: 10.1038/s42255-019-0099-7
Schaeffer, M. et al. Rapid sensing of circulating ghrelin by hypothalamic appetite-modifying neurons. Proc. Natl Acad. Sci. USA 110, 1512–1517 (2013).
pubmed: 23297228
pmcid: 3557016
doi: 10.1073/pnas.1212137110
Balland, E. et al. Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain. Cell Metab. 19, 293–301 (2014).
pubmed: 24506870
pmcid: 3936883
doi: 10.1016/j.cmet.2013.12.015
Collden, G. et al. Neonatal overnutrition causes early alterations in the central response to peripheral ghrelin. Mol. Metab. 4, 15–24 (2015).
pubmed: 25685686
doi: 10.1016/j.molmet.2014.10.003
Butte, N. F. Impact of infant feeding practices on childhood obesity. J. Nutr. 139, 412S–416S (2009).
pubmed: 19106326
doi: 10.3945/jn.108.097014
Oddy, W. H. et al. Early infant feeding and adiposity risk: from infancy to adulthood. Ann. Nutr. Metab. 64, 262–270 (2014).
pubmed: 25300269
doi: 10.1159/000365031
Peneau, S., Hercberg, S. & Rolland-Cachera, M. F. Breastfeeding, early nutrition, and adult body fat. J. Pediatr. 164, 1363–1368 (2014).
pubmed: 24680014
doi: 10.1016/j.jpeds.2014.02.020
Rachid, T. L. et al. PPARα agonist elicits metabolically active brown adipocytes and weight loss in diet-induced obese mice. Cell Biochem. Funct. 33, 249–256 (2015).
pubmed: 25959716
doi: 10.1002/cbf.3111
Cheshmeh, S., Nachvak, S. M., Rezvani, N. & Saber, A. Effects of breastfeeding and formula feeding on the expression level of FTO, CPT1A and PPARα genes in healthy infants. Diabetes Metab. Syndr. Obes. 13, 2227–2237 (2020).
pubmed: 32617012
pmcid: 7326192
doi: 10.2147/DMSO.S252122
Saito, M. et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58, 1526–1531 (2009).
pubmed: 19401428
pmcid: 2699872
doi: 10.2337/db09-0530
Orava, J. et al. Blunted metabolic responses to cold and insulin stimulation in brown adipose tissue of obese humans. Obesity 21, 2279–2287 (2013).
pubmed: 23554353
doi: 10.1002/oby.20456
van Marken Lichtenbelt, W. D. et al. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360, 1500–1508 (2009).
pubmed: 19357405
doi: 10.1056/NEJMoa0808718
Villarroya, F., Cereijo, R., Villarroya, J., Gavalda-Navarro, A. & Giralt, M. Toward an understanding of how immune cells control brown and beige adipobiology. Cell Metab. 27, 954–961 (2018).
pubmed: 29719233
doi: 10.1016/j.cmet.2018.04.006
Scheele, C. & Wolfrum, C. Brown adipose crosstalk in tissue plasticity and human metabolism. Endocr. Rev. 41, 53–65 (2020).
doi: 10.1210/endrev/bnz007
Carpentier, A. C. et al. Brown adipose tissue energy metabolism in humans. Front Endocrinol. 9, 447 (2018).
doi: 10.3389/fendo.2018.00447
Chen, K. Y. et al. Brown Adipose Reporting Criteria in Imaging STudies (BARCIST 1.0): recommendations for standardized FDG-PET/CT experiments in humans. Cell Metab. 24, 210–222 (2016).
pubmed: 27508870
pmcid: 4981083
doi: 10.1016/j.cmet.2016.07.014
Geng, L., Lam, K. S. L. & Xu, A. The therapeutic potential of FGF21 in metabolic diseases: from bench to clinic. Nat. Rev. Endocrinol. 16, 654–667 (2020).
pubmed: 32764725
doi: 10.1038/s41574-020-0386-0
Giralt, M., Gavalda-Navarro, A. & Villarroya, F. Fibroblast growth factor-21, energy balance and obesity. Mol. Cell. Endocrinol. 418, 66–73 (2015).
pubmed: 26415590
doi: 10.1016/j.mce.2015.09.018
Gavalda-Navarro, A. et al. Fibroblast growth factor 21 in breast milk controls neonatal intestine function. Sci. Rep. 5, 13717 (2015).
pubmed: 26329882
pmcid: 4557064
doi: 10.1038/srep13717
Luo, Y. et al. Rush to the fire: FGF21 extinguishes metabolic stress, metaflammation and tissue damage. Cytokine Growth Factor Rev. 38, 59–65 (2017).
pubmed: 28887067
doi: 10.1016/j.cytogfr.2017.08.001
Ye, M. et al. FGF21-FGFR1 coordinates phospholipid homeostasis, lipid droplet function, and ER stress in obesity. Endocrinology 157, 4754–4769 (2016).
pubmed: 27690692
doi: 10.1210/en.2016-1710
Gaich, G. et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab. 18, 333–340 (2013).
pubmed: 24011069
doi: 10.1016/j.cmet.2013.08.005
Moore, C. B., Guthrie, E. H., Huang, M. T. & Taxman, D. J. Short hairpin RNA (shRNA): design, delivery, and assessment of gene knockdown. Methods Mol. Biol. 629, 141–158 (2010).
pubmed: 20387148
pmcid: 3679364
Owen, B. M. et al. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab. 20, 670–677 (2014).
pubmed: 25130400
pmcid: 4192037
doi: 10.1016/j.cmet.2014.07.012
Xu, C. et al. KLB, encoding β-Klotho, is mutated in patients with congenital hypogonadotropic hypogonadism. EMBO Mol. Med. 9, 1379–1397 (2017).
pubmed: 28754744
pmcid: 5623842
doi: 10.15252/emmm.201607376
Prevot, V. et al. The versatile tanycyte: a hypothalamic integrator of reproduction and energy metabolism. Endocr. Rev. 39, 333–368 (2018).
pubmed: 29351662
doi: 10.1210/er.2017-00235
Duquenne, M. et al. Leptin brain entry via a tanycytic LepR–EGFR shuttle controls lipid metabolism and pancreas function. Nat. Metab. 3, 1071–1090 (2021).
pubmed: 34341568
pmcid: 7611554
doi: 10.1038/s42255-021-00432-5
Porniece Kumar, M. et al. Insulin signalling in tanycytes gates hypothalamic insulin uptake and regulation of AgRP neuron activity. Nat. Metab. 3, 1662–1679 (2021).
pubmed: 34931084
pmcid: 8688146
doi: 10.1038/s42255-021-00499-0
Talukdar, S. et al. FGF21 regulates sweet and alcohol preference. Cell Metab. 23, 344–349 (2016).
pubmed: 26724861
doi: 10.1016/j.cmet.2015.12.008
Lippert, R. N. et al. Maternal high-fat diet during lactation reprograms the dopaminergic circuitry in mice. J. Clin. Invest. 130, 3761–3776 (2020).
pubmed: 32510473
pmcid: 7324207
doi: 10.1172/JCI134412
Kilkenny, D. M. & Rocheleau, J. V. The FGF21 receptor signaling complex: Klothoβ, FGFR1c, and other regulatory interactions. Vitam. Horm. 101, 17–58 (2016).
pubmed: 27125737
doi: 10.1016/bs.vh.2016.02.008
Sonoda, J., Chen, M. Z. & Baruch, A. FGF21-receptor agonists: an emerging therapeutic class for obesity-related diseases. Horm. Mol. Biol. Clin. Investig. 30, 20170002 (2017).
Jensen-Cody, S. O. et al. FGF21 signals to glutamatergic neurons in the ventromedial hypothalamus to suppress carbohydrate intake. Cell Metab. 32, 273–286 (2020).
pubmed: 32640184
pmcid: 7734879
doi: 10.1016/j.cmet.2020.06.008
Beiroa, D. et al. GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes 63, 3346–3358 (2014).
pubmed: 24917578
doi: 10.2337/db14-0302
Folgueira, C. et al. Uroguanylin action in the brain reduces weight gain in obese mice via different efferent autonomic pathways. Diabetes 65, 421–432 (2016).
pubmed: 26566631
doi: 10.2337/db15-0889
Quinones, M. et al. p53 in AgRP neurons is required for protection against diet-induced obesity via JNK1. Nat. Commun. 9, 3432 (2018).
pubmed: 30143607
pmcid: 6109113
doi: 10.1038/s41467-018-05711-6
Fondevila, M. F. et al. The l-α-lysophosphatidylinositol/G-protein-coupled receptor 55 system induces the development of nonalcoholic steatosis and steatohepatitis. Hepatology 73, 606–624 (2020).
pubmed: 32329085
doi: 10.1002/hep.31290
Lee, D. F. et al. Combining competition assays with genetic complementation strategies to dissect mouse embryonic stem cell self-renewal and pluripotency. Nat. Protoc. 7, 729–748 (2012).
pubmed: 22441292
doi: 10.1038/nprot.2012.018
Couasnay, G., Frey, C. & Elefteriou, F. Promoter Cre-specific genotyping assays for authentication of Cre-driver mouse lines. JBMR Plus 3, e10128 (2019).
pubmed: 31044186
pmcid: 6478581
doi: 10.1002/jbm4.10128
Messina, A. et al. A microRNA switch regulates the rise in hypothalamic GnRH production before puberty. Nat. Neurosci. 19, 835–844 (2016).
pubmed: 27135215
doi: 10.1038/nn.4298
Grabinski, T. M., Kneynsberg, A., Manfredsson, F. P. & Kanaan, N. M. A method for combining RNAscope in situ hybridization with immunohistochemistry in thick free-floating brain sections and primary neuronal cultures. PLoS ONE 10, e0120120 (2015).
pubmed: 25794171
pmcid: 4368734
doi: 10.1371/journal.pone.0120120