Precursor Engineering to Reduce Processing Temperature of ZnO Films for Flexible Organic Solar Cells.
Amine-Free
Electron-Transport Layer
Flexible Organic Solar Cells
Precursor Engineering
Zinc Oxide
Journal
Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543
Informations de publication
Date de publication:
19 Sep 2022
19 Sep 2022
Historique:
received:
17
06
2022
pubmed:
27
7
2022
medline:
27
7
2022
entrez:
26
7
2022
Statut:
ppublish
Résumé
Sol-gel-derived ZnO is one of the most widely used electron-transport layers in inverted organic solar cells. The sol-gel ZnO precursor consists of zinc acetate dehydrate (ZAH) and ethanolamine dissolved in 2-methoxyethanol, where ethanolamine chelates with ZAH, which helps ZAH dissolve in the 2-methoxyethanol. However, an annealing temperature above 120 °C is required to convert the complexes into ZnO. High temperatures are incompatible with flexible plastic substrates such as polyethylene terephthalate. In this work, we report an amine-free recipe consisting of ZAH in methanol to prepare ZnO films. The complex formed in the amine-free precursor solution is methanol-solvated ZAH, which is simpler than that of the amine-containing precursor solution. The temperature required for converting the precursor complex into ZnO was reduced to 90 °C for the amine-free recipe. Low-temperature-processed ZnO can function efficiently as an electron-transport layer in both rigid and flexible inverted nonfullerene solar cells.
Identifiants
pubmed: 35880630
doi: 10.1002/anie.202208815
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202208815Subventions
Organisme : the National Natural Science Foundation of China
ID : 51973074
Organisme : the National Natural Science Foundation of China
ID : 61804060
Organisme : the China Postdoctoral Science Foundation
ID : 2020M682404
Organisme : the China Postdoctoral Science Foundation
ID : 2019M662614
Informations de copyright
© 2022 Wiley-VCH GmbH.
Références
S. Park, S. W. Heo, W. Lee, D. Inoue, Z. Jiang, K. Yu, H. Jinno, D. Hashizume, M. Sekino, T. Yokota, K. Fukuda, K. Tajima, T. Someya, Nature 2018, 561, 516-521.
K. Fukuda, K. Yu, T. Someya, Adv. Energy Mater. 2020, 10, 2000765.
H. Jinno, K. Fukuda, X. Xu, S. Park, Y. Suzuki, M. Koizumi, T. Yokota, I. Osaka, K. Takimiya, T. Someya, Nat. Energy 2017, 2, 780-785.
F. Qin, W. Wang, L. Sun, X. Jiang, L. Hu, S. Xiong, T. Liu, X. Dong, J. Li, Y. Jiang, J. Hou, K. Fukuda, T. Someya, Y. Zhou, Nat. Commun. 2020, 11, 4508.
F. Qin, L. Sun, H. Chen, Y. Liu, X. Lu, W. Wang, T. Liu, X. Dong, P. Jiang, Y. Jiang, L. Wang, Y. Zhou, Adv. Mater. 2021, 33, 2103017.
X. Fan, B. Xu, S. Liu, C. Cui, J. Wang, F. Yan, ACS Appl. Mater. Interfaces 2016, 8, 14029-14036.
Y. Jiang, X. Dong, L. Sun, T. Liu, F. Qin, C. Xie, P. Jiang, L. Hu, X. Lu, X. Zhou, W. Meng, N. Li, C. J. Brabec, Y. Zhou, Nat. Energy 2022, 7, 352-359.
Y. Sun, M. Chang, L. Meng, X. Wan, H. Gao, Y. Zhang, K. Zhao, Z. Sun, C. Li, S. Liu, H. Wang, J. Liang, Y. Chen, Nat. Electron. 2019, 2, 513-520.
S. A. Hashemi, S. Ramakrishna, A. G. Aberle, Energy Environ. Sci. 2020, 13, 685-743.
Y. Li, G. Xu, C. Cui, Y. Li, Adv. Energy Mater. 2018, 8, 1701791.
C. Liu, C. Xiao, C. Xie, W. Li, Nano Energy 2021, 89, 106399.
X. Fan, Adv. Funct. Mater. 2021, 31, 2009399.
S. Bao, H. Yang, H. Fan, J. Zhang, Z. Wei, C. Cui, Y. Li, Adv. Mater. 2021, 33, 2105301.
L. Hong, H. Yao, Y. Cui, P. Bi, T. Zhang, Y. Cheng, Y. Zu, J. Qin, R. Yu, Z. Ge, J. Hou, Adv. Mater. 2021, 33, 2103091.
Y. Cai, Y. Li, R. Wang, H. Wu, Z. Chen, J. Zhang, Z. Ma, X. Hao, Y. Zhao, C. Zhang, F. Huang, Y. Sun, Adv. Mater. 2021, 33, 2101733.
C. Li, J. Zhou, J. Song, J. Xu, H. Zhang, X. Zhang, J. Guo, L. Zhu, D. Wei, G. Han, J. Min, Y. Zhang, Z. Xie, Y. Yi, H. Yan, F. Gao, F. Liu, Y. Sun, Nat. Energy 2021, 6, 605-613.
Y. Lin, Y. Firdaus, F. H. Isikgor, M. I. Nugraha, E. Yengel, G. T. Harrison, R. Hallani, A. El-Labban, H. Faber, C. Ma, X. Zheng, A. Subbiah, C. T. Howells, O. M. Bakr, I. McCulloch, S. D. Wolf, L. Tsetseris, T. D. Anthopoulos, ACS Energy Lett. 2020, 5, 2935-2944.
Y. Cui, Y. Xu, H. Yao, P. Bi, L. Hong, J. Zhang, Y. Zu, T. Zhang, J. Qin, J. Ren, Z. Chen, C. He, X. Hao, Z. Wei, J. Hou, Adv. Mater. 2021, 33, 2102420.
Y. Liu, B. Liu, C. Q. Ma, F. Huang, G. Feng, H. Chen, J. Hou, L. Yan, Q. Wei, Q. Luo, Q. Bao, W. Ma, W. Liu, W. Li, X. Wan, X. Hu, Y. Han, Y. Li, Y. Zhou, Y. Zou, Y. Chen, Y. Liu, L. Meng, Y. Li, Y. Chen, Z. Tang, Z. Hu, Z. G. Zhang, Z. Bo, Sci. China Chem. 2022, 65, 224-268.
J. Wan, Y. Xia, J. Fang, Z. Zhang, B. Xu, J. Wang, L. Ai, W. Song, K. N. Hui, X. Fan, Y. Li, Nano-Micro Lett. 2021, 13, 44.
J. Wan, X. Fan, H. Huang, J. Wang, Z. Zhang, J. Fang, F. Yan, J. Mater. Chem. A 2020, 8, 21007-21015.
T. Y. Qu, L. J. Zuo, J. D. Chen, X. Shi, T. Zhang, L. Li, K. C. Shen, H. Ren, S. Wang, F. M. Xie, Y. Q. Li, A. K. Y. Jen, J. X. Tang, Adv. Opt. Mater. 2020, 8, 2000669.
S. Xiong, L. Hu, L. Hu, L. Sun, F. Qin, X. Liu, M. Fahlman, Y. Zhou, Adv. Mater. 2019, 31, 1806616.
J. Huang, Z. Yin, Q. Zheng, Energy Environ. Sci. 2011, 4, 3861-3877.
Z. Liang, Q. Zhang, L. Jiang, G. Cao, Energy Environ. Sci. 2015, 8, 3442-3476.
M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, D. S. Ginley, Appl. Phys. Lett. 2006, 89, 143517.
L. Sun, W. Zeng, C. Xie, L. Hu, X. Dong, F. Qin, W. Wang, T. Liu, X. Jiang, Y. Jiang, Y. Zhou, Adv. Mater. 2020, 32, 1907840.
M. Ohyama, H. Kozuka, T. Yoko, Thin Solid Films 1997, 306, 78-85.
P. Hosseini Vajargah, H. Abdizadeh, R. Ebrahimifard, M. R. Golobostanfard, Appl. Surf. Sci. 2013, 285, 732-743.
Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter, A. J. Heeger, Adv. Mater. 2011, 23, 1679-1683.
S. Bai, Z. Wu, X. Xu, Y. Jin, B. Sun, X. Guo, S. He, X. Wang, Z. Ye, H. Wei, X. Han, W. Ma, Appl. Phys. Lett. 2012, 100, 203906.
B. A. MacLeod, B. J. Tremolet de Villers, P. Schulz, P. F. Ndione, H. Kim, A. J. Giordano, K. Zhu, S. R. Marder, S. Graham, J. J. Berry, A. Kahn, D. C. Olson, Energy Environ. Sci. 2015, 8, 592-601.
R. Po, A. Bernardi, A. Calabrese, C. Carbonera, G. Corso, A. Pellegrino, Energy Environ. Sci. 2014, 7, 925-943.
L. Spanhel, M. A. Anderson, J. Am. Chem. Soc. 1991, 113, 2826-2833.
E. A. Meulenkamp, J. Phys. Chem. B 1998, 102, 5566-5572.
W. J. E. Beek, M. M. Wienk, R. A. J. Janssen, Adv. Mater. 2004, 16, 1009-1012.
A. Sirelkhatim, S. Mahmud, A. Seeni, N. H. M. Kaus, L. C. Ann, S. K. M. Bakhori, H. Hasan, D. Mohamad, Nano-Micro Lett. 2015, 7, 219-742.
J. Wei, G. Ji, C. Zhang, L. Yan, Q. Luo, C. Wang, Q. Chen, J. Yang, L. Chen, C. Q. Ma, ACS Nano 2018, 12, 5518-5529.
X. Liu, H. Q. Wang, Y. Li, Z. Gui, S. Ming, K. Usman, W. Zhang, J. Fang, Adv. Sci. 2017, 4, 1700053.
E. Hosono, S. Fujihara, T. Kimura, H. Imai, J. Sol-Gel Sci. Technol. 2004, 29, 71-79.
L. Znaidi, Mater. Sci. Eng. B 2010, 174, 18-30.
X. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang, R. Liu, Sci. Rep. 2014, 4, 4596.