Dietary γ-Aminobutyric Acid Supplementation Inhibits High-Fat Diet-Induced Hepatic Steatosis via Modulating Gut Microbiota in Broilers.
broilers
gut microbiota
lipid metabolism
γ-aminobutyric acid
Journal
Microorganisms
ISSN: 2076-2607
Titre abrégé: Microorganisms
Pays: Switzerland
ID NLM: 101625893
Informations de publication
Date de publication:
24 Jun 2022
24 Jun 2022
Historique:
received:
25
05
2022
revised:
19
06
2022
accepted:
21
06
2022
entrez:
27
7
2022
pubmed:
28
7
2022
medline:
28
7
2022
Statut:
epublish
Résumé
The present study aims to investigate the effect of γ-aminobutyric acid (GABA) on liver lipid metabolism and on AA broilers. Broilers were divided into three groups and fed with low-fat diets, high-fat diets, and high-fat diets supplemented with GABA. Results showed that GABA supplementation decreased the level of triglyceride (TG) in the serum and liver of broilers fed high-fat diets, accompanied by up-regulated mRNA expression of genes related to lipolysis and β-oxidation in the liver (p < 0.05). Furthermore, GABA supplementation increased liver antioxidant capacity, accompanied by up-regulated mRNA expression of antioxidant genes (p < 0.05). 16S rRNA gene sequencing showed that GABA improved high-fat diet-induced dysbiosis of gut microbiota, increased the relative abundance of Bacteroidetes phylum and Barnesiella genus, and decreased the relative abundance of Firmicutes phylum and Ruminococcus_torques_group and Romboutsia genus (p < 0.05). Moreover, GABA supplementation promoted the production of propionic acid and butyric acid in cecal contents. Correlation analysis further suggested the ratio of Firmicutes/Bacteroidetes negatively correlated with hepatic TG content, and positively correlated with cecal short chain fatty acids content (r > 0.6, p < 0.01). Together, these data suggest that GABA supplementation can inhibit hepatic TG deposition and steatosis via regulating gut microbiota in broilers.
Identifiants
pubmed: 35889001
pii: microorganisms10071281
doi: 10.3390/microorganisms10071281
pmc: PMC9323641
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : Yingdong Ni
ID : 2017YFE0114400
Organisme : Yingdong Ni
ID : PAPD
Références
Biosci Microbiota Food Health. 2021;40(1):50-58
pubmed: 33520569
Poult Sci. 2021 Jan;100(1):73-83
pubmed: 33357709
Br J Nutr. 2019 Aug 28;122(4):400-410
pubmed: 31204637
Poult Sci. 2022 Apr;101(4):101708
pubmed: 35150940
Comp Biochem Physiol A Mol Integr Physiol. 2000 May;126(1):91-9
pubmed: 10908856
J Agric Food Chem. 2018 Jul 25;66(29):7633-7642
pubmed: 29961332
Endocrinol Diabetes Metab. 2020 Feb 24;3(4):e00112
pubmed: 33102794
Neurochem Res. 2008 Mar;33(3):370-7
pubmed: 17768679
Anim Nutr. 2020 Sep;6(3):293-304
pubmed: 33005763
J Biol Chem. 2001 Sep 28;276(39):36083-90
pubmed: 11432868
Stress. 2017 Nov;20(6):562-572
pubmed: 28911262
Clin Mol Hepatol. 2013 Sep;19(3):210-5
pubmed: 24133660
Animals (Basel). 2020 Mar 19;10(3):
pubmed: 32204385
J Agric Food Chem. 2018 Jan 31;66(4):881-890
pubmed: 29327584
Poult Sci. 2016 Mar;95(3):612-21
pubmed: 26755655
J Physiol Biochem. 2016 Aug;73(3):405-414
pubmed: 28600747
Poult Sci. 2021 Sep;100(9):101320
pubmed: 34274572
Front Microbiol. 2019 Sep 26;10:2176
pubmed: 31616396
Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11692-7
pubmed: 21709230
Front Microbiol. 2021 Jan 14;11:555293
pubmed: 33584555
J Nutr Biochem. 2018 Apr;54:18-27
pubmed: 29223827
Biomolecules. 2021 Dec 31;12(1):
pubmed: 35053204
Oxid Med Cell Longev. 2021 Aug 23;2021:4704771
pubmed: 34484560
Metabolism. 2016 Aug;65(8):1038-48
pubmed: 26823198
J Nutr. 1997 May;127(5 Suppl):805S-808S
pubmed: 9164241
Front Vet Sci. 2021 Mar 31;8:609348
pubmed: 33869315
Poult Sci. 2021 Jan;100(1):235-245
pubmed: 33357686
Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2580-5
pubmed: 20133656
Front Immunol. 2021 Oct 15;12:759323
pubmed: 34721434
Poult Sci. 1975 Jul;54(4):1075-93
pubmed: 240159
Infect Immun. 2013 Mar;81(3):965-73
pubmed: 23319552
Clin Microbiol Rev. 2007 Oct;20(4):593-621
pubmed: 17934076