Detection of a Stroke Volume Decrease by Machine-Learning Algorithms Based on Thoracic Bioimpedance in Experimental Hypovolaemia.
compensated shock
electrical cardiometry
hypovolaemia
lower body negative pressure chamber
machine learning
prediction model
Journal
Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366
Informations de publication
Date de publication:
06 Jul 2022
06 Jul 2022
Historique:
received:
17
05
2022
revised:
23
06
2022
accepted:
01
07
2022
entrez:
27
7
2022
pubmed:
28
7
2022
medline:
29
7
2022
Statut:
epublish
Résumé
Compensated shock and hypovolaemia are frequent conditions that remain clinically undetected and can quickly cause deterioration of perioperative and critically ill patients. Automated, accurate and non-invasive detection methods are needed to avoid such critical situations. In this experimental study, we aimed to create a prediction model for stroke volume index (SVI) decrease based on electrical cardiometry (EC) measurements. Transthoracic echo served as reference for SVI assessment (SVI-TTE). In 30 healthy male volunteers, central hypovolaemia was simulated using a lower body negative pressure (LBNP) chamber. A machine-learning algorithm based on variables of EC was designed. During LBNP, SVI-TTE declined consecutively, whereas the vital signs (arterial pressures and heart rate) remained within normal ranges. Compared to heart rate (AUC: 0.83 (95% CI: 0.73-0.87)) and systolic arterial pressure (AUC: 0.82 (95% CI: 0.74-0.85)), a model integrating EC variables (AUC: 0.91 (0.83-0.94)) showed a superior ability to predict a decrease in SVI-TTE ≥ 20% (
Identifiants
pubmed: 35890746
pii: s22145066
doi: 10.3390/s22145066
pmc: PMC9316072
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Références
Anesthesiology. 2010 Apr;112(4):1023-40
pubmed: 20234303
J Appl Physiol (1985). 2014 Feb 15;116(4):406-15
pubmed: 24356525
J Clin Monit Comput. 2016 Oct;30(5):603-20
pubmed: 26315477
Circ Res. 1974 Apr;34(4):515-24
pubmed: 4826928
J Clin Monit Comput. 2017 Feb;31(1):5-17
pubmed: 28064413
Front Med (Lausanne). 2015 Aug 03;2:44
pubmed: 26284244
BMC Health Serv Res. 2011 May 31;11:135
pubmed: 21627788
J Emerg Med. 2003 May;24(4):413-22
pubmed: 12745044
J Trauma Acute Care Surg. 2013 Jun;74(6):1432-7
pubmed: 23694869
JAMA. 1999 Mar 17;281(11):1022-9
pubmed: 10086438
Cancer. 1950 Jan;3(1):32-5
pubmed: 15405679
Adv Physiol Educ. 2007 Mar;31(1):76-81
pubmed: 17327587
J Clin Monit Comput. 2020 Jun;34(3):433-460
pubmed: 31175501
Ann Intensive Care. 2011 Mar 21;1(1):1
pubmed: 21906322
Intensive Care Med. 1997 Mar;23(3):276-81
pubmed: 9083229
Anesthesiology. 2011 Aug;115(2):231-41
pubmed: 21705869
Eur Heart J. 2003 Oct;24(20):1815-23
pubmed: 14563340
Br J Anaesth. 2017 Mar 1;118(3):298-310
pubmed: 28203792
Br J Anaesth. 2005 Nov;95(5):603-10
pubmed: 16155037
Crit Care. 2017 Jun 9;21(1):136
pubmed: 28595621
J Trauma. 2011 Jul;71(1 Suppl):S25-32
pubmed: 21795890
J Med Invest. 2019;66(1.2):75-80
pubmed: 31064959
J Appl Physiol (1985). 2004 Apr;96(4):1249-61
pubmed: 15016789
Physiol Rev. 2019 Jan 1;99(1):807-851
pubmed: 30540225
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:3770-3774
pubmed: 31946695
Auton Neurosci. 2004 Apr 30;111(2):127-34
pubmed: 15182742
Shock. 2015 Aug;44 Suppl 1:27-32
pubmed: 25565640