Quantitative 7T sodium magnetic resonance imaging of the human brain using a 32-channel phased-array head coil: Application to patients with secondary progressive multiple sclerosis.


Journal

NMR in biomedicine
ISSN: 1099-1492
Titre abrégé: NMR Biomed
Pays: England
ID NLM: 8915233

Informations de publication

Date de publication:
Dec 2022
Historique:
revised: 14 07 2022
received: 05 05 2022
accepted: 25 07 2022
pubmed: 28 7 2022
medline: 16 11 2022
entrez: 27 7 2022
Statut: ppublish

Résumé

Apparent tissue sodium concentrations (aTSCs) determined by

Identifiants

pubmed: 35892310
doi: 10.1002/nbm.4806
doi:

Substances chimiques

Sodium 9NEZ333N27
Biomarkers 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e4806

Informations de copyright

© 2022 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

Références

Haider L, Zrzavy T, Hametner S, et al. The topograpy of demyelination and neurodegeneration in the multiple sclerosis brain. Brain. 2016;139(Pt 3):807-815. doi:10.1093/brain/awv398
Smith KJ. Sodium channels and multiple sclerosis: roles in symptom production, damage and therapy. Brain Pathol. 2007;17(2):230-242. doi:10.1111/j.1750-3639.2007.00066.x
Paling D, Golay X, Wheeler-Kingshott C, Kapoor R, Miller D. Energy failure in multiple sclerosis and its investigation using MR techniques. J Neurol. 2011;258(12):2113-2127. doi:10.1007/s00415-011-6117-7
Huhn K, Engelhorn T, Linker RA, Nagel AM. Potential of sodium MRI as a biomarker for neurodegeneration and neuroinflammation in multiple sclerosis. Front Neurol. 2019;10:84. doi:10.3389/fneur.2019.00084
Inglese M, Madelin G, Oesingmann N, et al. Brain tissue sodium concentration in multiple sclerosis: a sodium imaging study at 3 Tesla. Brain. 2010;133(Pt 3):847-857. doi:10.1093/brain/awp334
Zaaraoui W, Konstandin S, Audoin B, et al. Distribution of brain sodium accumulation correlates with disability in multiple sclerosis: a cross-sectional 23Na MR imaging study. Radiology. 2012;264(3):859-867. doi:10.1148/radiol.12112680
Paling D, Solanky BS, Riemer F, et al. Sodium accumulation is associated with disability and a progressive course in multiple sclerosis. Brain. 2013;136(Pt 7):2305-2317. doi:10.1093/brain/awt149
Maarouf A, Audoin B, Konstandin S, et al. Topography of brain sodium accumulation in progressive multiple sclerosis. Magma. 2014;27(1):53-62. doi:10.1007/s10334-013-0396-1
Brownlee WJ, Solanky B, Prados F, et al. Cortical grey matter sodium accumulation is associated with disability and secondary progressive disease course in relapse-onset multiple sclerosis. J Neurol Neurosurg Psychiatry. 2019;90(7):755-760. doi:10.1136/jnnp-2018-319634
Waxman SG. Mechanisms of disease: sodium channels and neuroprotection in multiple sclerosis-current status. Nat Clin Pract Neurol. 2008;4(3):159-169. doi:10.1038/ncpneuro0735
Trapp BD, Stys PK. Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Lancet Neurol. 2009;8(3):280-291. doi:10.1016/S1474-4422(09)70043-2
Petracca M, Vancea RO, Fleysher L, Jonkman LE, Oesingmann N, Inglese M. Brain intra- and extracellular sodium concentration in multiple sclerosis: a 7 T MRI study. Brain. 2016;139(Pt 3):795-806. doi:10.1093/brain/awv386
Stobbe R, Boyd A, Smyth P, Emery D, Valdes Cabrera D, Beaulieu C. Sodium intensity changes differ between relaxation- and density-weighted MRI in multiple sclerosis. Front Neurol. 2021;12:693447. doi:10.3389/fneur.2021.693447
Thulborn KR. Quantitative sodium MR imaging: A review of its evolving role in medicine. NeuroImage. 2018;168:250-268. doi:10.1016/j.neuroimage.2016.11.056
Zaric O, Juras V, Szomolanyi P, et al. Frontiers of sodium MRI revisited: from cartilage to brain imaging. J Magn Reson Imaging. 2021;54(1):e27326.
Stobbe RW, Beaulieu C. Calculating potential error in sodium MRI with respect to the analysis of small objects. Magn Reson Med. 2018;79(6):2968-2977. doi:10.1002/mrm.26962
Konstandin S, Nagel AM. Measurement techniques for magnetic resonance imaging of fast relaxing nuclei. Magma. 2014;27(1):5-19. doi:10.1007/s10334-013-0394-3
Hu R, Kleimaier D, Malzacher M, Hoesl MAU, Paschke NK, Schad LR. X-nuclei imaging: Current state, technical challenges, and future directions. J Magn Reson Imaging. 2020;51(2):355-376. doi:10.1002/jmri.26780
Shajan G, Mirkes C, Buckenmaier K, Hoffmann J, Pohmann R, Scheffler K. Three-layered radio frequency coil arrangement for sodium MRI of the human brain at 9.4 Tesla. Magn Reson Med. 2016;75(2):906-916. doi:10.1002/mrm.25666
Benkhedah N, Hoffmann SH, Biller A, Nagel AM. Evaluation of adaptive combination of 30-channel head receive coil array data in 23Na MR imaging. Magn Reson Med. 2016;75(2):527-536. doi:10.1002/mrm.25572
Qian Y, Zhao T, Zheng H, Weimer J, Boada FE. High-resolution sodium imaging of human brain at 7 T. Magn Reson Med. 2012;68(1):227-233. doi:10.1002/mrm.23225
Gerhalter T, Chen AM, Dehkharghani S, et al. Global decrease in brain sodium concentration after mild traumatic brain injury. Brain Commun. 2021;3(2):fcab051. doi:10.1093/braincomms/fcab051
Stobbe RW, Beaulieu C. Residual quadrupole interaction in brain and its effect on quantitative sodium imaging. NMR Biomed. 2016;29(2):119-128. doi:10.1002/nbm.3376
Nagel AM, Laun FB, Weber MA, Matthies C, Semmler W, Schad LR. Sodium MRI using a density-adapted 3D radial acquisition technique. Magn Reson Med. 2009;62(6):1565-1573. doi:10.1002/mrm.22157
Walsh DO, Gmitro AF, Marcellin MW. Adaptive reconstruction of phased array MR imagery. Magn Reson Med. 2000;43(5):682-690. doi:10.1002/(SICI)1522-2594(200005)43:5%3C682::AID-MRM10%3E3.0.CO;2-G
Wilferth T, Muller M, Gast LV, et al. Motion-corrected (23) Na MRI of the human brain using interleaved (1) H 3D navigator images. Magn Reson Med. 2022;88(1):309-321. doi:10.1002/mrm.29221
Stobbe R, Beaulieu C. Advantage of sampling density weighted apodization over postacquisition filtering apodization for sodium MRI of the human brain. Magn Reson Med. 2008;60(4):981-986. doi:10.1002/mrm.21738
Konstandin S, Nagel AM. Performance of sampling density-weighted and postfiltered density-adapted projection reconstruction in sodium magnetic resonance imaging. Magn Reson Med. 2013;69(2):495-502. doi:10.1002/mrm.24255
Fessler JA, Sutton BP. Nonuniform fast Fourier transforms using min-max interpolation. IEEE Trans Signal Process. 2003;51(2):560-574. doi:10.1109/TSP.2002.807005
Niesporek SC, Hoffmann SH, Berger MC, et al. Partial volume correction for in vivo (23)Na-MRI data of the human brain. Neuroimage. 2015;112:353-363. doi:10.1016/j.neuroimage.2015.03.025
Lachner S, Ruck L, Niesporek SC, et al. Comparison of optimized intensity correction methods for (23)Na MRI of the human brain using a 32-channel phased array coil at 7 Tesla. Z Med Phys. 2020;30(2):104-115. doi:10.1016/j.zemedi.2019.10.004
Lommen JM, Flassbeck S, Behl NGR, et al. Probing the microscopic environment of (23) Na ions in brain tissue by MRI: On the accuracy of different sampling schemes for the determination of rapid, biexponential T2* decay at low signal-to-noise ratio. Magn Reson Med. 2018;80(2):571-584. doi:10.1002/mrm.27059
Nagel AM, Bock M, Hartmann C, et al. The potential of relaxation-weighted sodium magnetic resonance imaging as demonstrated on brain tumors. Invest Radiol. 2011;46(9):539-547. doi:10.1097/RLI.0b013e31821ae918
Popescu BF, Pirko I, Lucchinetti CF. Pathology of multiple sclerosis: Where do we stand? Continuum. 2013;19(4):901-921.
Thompson AJ, Banwell BL, Barkhof F, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2):162-173. doi:10.1016/S1474-4422(17)30470-2
Woessner DE. NMR relaxation of spin-3/2 nuclei: Effects of structure, order, and dynamics in aqueous heterogeneous systems. Concepts Magn Reson. 2001;13(5):294-325. doi:10.1002/cmr.1015
Wattjes MP, Ciccarelli O, Reich DS, et al. 2021 MAGNIMS-CMSC-NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. Lancet Neurol. 2021;20(8):653-670. doi:10.1016/S1474-4422(21)00095-8
Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8(2):135-160. doi:10.1177/096228029900800204
Harrington MG, Salomon RM, Pogoda JM, et al. Cerebrospinal fluid sodium rhythms. Cerebrospinal Fluid Res. 2010;7:3. doi:10.1186/1743-8454-7-3
Harrington MG, Fonteh AN, Cowan RP, et al. Cerebrospinal fluid sodium increases in migraine. Headache. 2006;46(7):1128-1135. doi:10.1111/j.1526-4610.2006.00445.x
Madelin G, Lee JS, Regatte RR, Jerschow A. Sodium MRI: methods and applications. Prog Nucl Magn Reson Spectrosc. 2014;79:14-47. doi:10.1016/j.pnmrs.2014.02.001
Meyer MM, Haneder S, Konstandin S, et al. Repeatability and reproducibility of cerebral (23)Na imaging in healthy subjects. BMC Med Imaging. 2019;19(1):26. doi:10.1186/s12880-019-0324-6
Riemer F, McHugh D, Zaccagna F, et al. Measuring tissue sodium concentration: Cross-vendor repeatability and reproducibility of (23) Na-MRI across two sites. J Magn Reson Imaging. 2019;50(4):1278-1284. doi:10.1002/jmri.26705
Cardinale F, Chinnici G, Bramerio M, et al. Validation of FreeSurfer-estimated brain cortical thickness: comparison with histologic measurements. Neuroinformatics. 2014;12(4):535-542. doi:10.1007/s12021-014-9229-2
Wang L, Lai HM, Thompson AJ, Miller DH. Survey of the distribution of lesion size in multiple sclerosis: implication for the measurement of total lesion load. J Neurol Neurosurg Psychiatry. 1997;63(4):452-455. doi:10.1136/jnnp.63.4.452
Kratzer FJ, Flassbeck S, Schmitter S, et al. 3D sodium ((23) Na) magnetic resonance fingerprinting for time-efficient relaxometric mapping. Magn Reson Med. 2021;86(5):2412-2425. doi:10.1002/mrm.28873
Burstein D, Springer CS Jr. Sodium MRI revisited. Magn Reson Med. 2019;82(2):521-524. doi:10.1002/mrm.27738
Lu A, Atkinson IC, Vaughn JT, Thulborn KR. Impact of gradient timing error on the tissue sodium concentration bioscale measured using flexible twisted projection imaging. J Magn Reson. 2011;213(1):176-181. doi:10.1016/j.jmr.2011.08.036

Auteurs

Tobias Wilferth (T)

Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.

Angelika Mennecke (A)

Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.

Lena V Gast (LV)

Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.

Sebastian Lachner (S)

Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.

Max Müller (M)

Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.

Veit Rothhammer (V)

Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.

Konstantin Huhn (K)

Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.

Michael Uder (M)

Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.

Arnd Doerfler (A)

Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.

Armin M Nagel (AM)

Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.
Division of Medical Physics in Radiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany.

Manuel Schmidt (M)

Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH