Quantitative 7T sodium magnetic resonance imaging of the human brain using a 32-channel phased-array head coil: Application to patients with secondary progressive multiple sclerosis.
7 T, brain MRI, multiple sclerosis, 23Na MRI, tissue sodium concentration, ultrahigh field strength
Journal
NMR in biomedicine
ISSN: 1099-1492
Titre abrégé: NMR Biomed
Pays: England
ID NLM: 8915233
Informations de publication
Date de publication:
Dec 2022
Dec 2022
Historique:
revised:
14
07
2022
received:
05
05
2022
accepted:
25
07
2022
pubmed:
28
7
2022
medline:
16
11
2022
entrez:
27
7
2022
Statut:
ppublish
Résumé
Apparent tissue sodium concentrations (aTSCs) determined by
Substances chimiques
Sodium
9NEZ333N27
Biomarkers
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e4806Informations de copyright
© 2022 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
Références
Haider L, Zrzavy T, Hametner S, et al. The topograpy of demyelination and neurodegeneration in the multiple sclerosis brain. Brain. 2016;139(Pt 3):807-815. doi:10.1093/brain/awv398
Smith KJ. Sodium channels and multiple sclerosis: roles in symptom production, damage and therapy. Brain Pathol. 2007;17(2):230-242. doi:10.1111/j.1750-3639.2007.00066.x
Paling D, Golay X, Wheeler-Kingshott C, Kapoor R, Miller D. Energy failure in multiple sclerosis and its investigation using MR techniques. J Neurol. 2011;258(12):2113-2127. doi:10.1007/s00415-011-6117-7
Huhn K, Engelhorn T, Linker RA, Nagel AM. Potential of sodium MRI as a biomarker for neurodegeneration and neuroinflammation in multiple sclerosis. Front Neurol. 2019;10:84. doi:10.3389/fneur.2019.00084
Inglese M, Madelin G, Oesingmann N, et al. Brain tissue sodium concentration in multiple sclerosis: a sodium imaging study at 3 Tesla. Brain. 2010;133(Pt 3):847-857. doi:10.1093/brain/awp334
Zaaraoui W, Konstandin S, Audoin B, et al. Distribution of brain sodium accumulation correlates with disability in multiple sclerosis: a cross-sectional 23Na MR imaging study. Radiology. 2012;264(3):859-867. doi:10.1148/radiol.12112680
Paling D, Solanky BS, Riemer F, et al. Sodium accumulation is associated with disability and a progressive course in multiple sclerosis. Brain. 2013;136(Pt 7):2305-2317. doi:10.1093/brain/awt149
Maarouf A, Audoin B, Konstandin S, et al. Topography of brain sodium accumulation in progressive multiple sclerosis. Magma. 2014;27(1):53-62. doi:10.1007/s10334-013-0396-1
Brownlee WJ, Solanky B, Prados F, et al. Cortical grey matter sodium accumulation is associated with disability and secondary progressive disease course in relapse-onset multiple sclerosis. J Neurol Neurosurg Psychiatry. 2019;90(7):755-760. doi:10.1136/jnnp-2018-319634
Waxman SG. Mechanisms of disease: sodium channels and neuroprotection in multiple sclerosis-current status. Nat Clin Pract Neurol. 2008;4(3):159-169. doi:10.1038/ncpneuro0735
Trapp BD, Stys PK. Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Lancet Neurol. 2009;8(3):280-291. doi:10.1016/S1474-4422(09)70043-2
Petracca M, Vancea RO, Fleysher L, Jonkman LE, Oesingmann N, Inglese M. Brain intra- and extracellular sodium concentration in multiple sclerosis: a 7 T MRI study. Brain. 2016;139(Pt 3):795-806. doi:10.1093/brain/awv386
Stobbe R, Boyd A, Smyth P, Emery D, Valdes Cabrera D, Beaulieu C. Sodium intensity changes differ between relaxation- and density-weighted MRI in multiple sclerosis. Front Neurol. 2021;12:693447. doi:10.3389/fneur.2021.693447
Thulborn KR. Quantitative sodium MR imaging: A review of its evolving role in medicine. NeuroImage. 2018;168:250-268. doi:10.1016/j.neuroimage.2016.11.056
Zaric O, Juras V, Szomolanyi P, et al. Frontiers of sodium MRI revisited: from cartilage to brain imaging. J Magn Reson Imaging. 2021;54(1):e27326.
Stobbe RW, Beaulieu C. Calculating potential error in sodium MRI with respect to the analysis of small objects. Magn Reson Med. 2018;79(6):2968-2977. doi:10.1002/mrm.26962
Konstandin S, Nagel AM. Measurement techniques for magnetic resonance imaging of fast relaxing nuclei. Magma. 2014;27(1):5-19. doi:10.1007/s10334-013-0394-3
Hu R, Kleimaier D, Malzacher M, Hoesl MAU, Paschke NK, Schad LR. X-nuclei imaging: Current state, technical challenges, and future directions. J Magn Reson Imaging. 2020;51(2):355-376. doi:10.1002/jmri.26780
Shajan G, Mirkes C, Buckenmaier K, Hoffmann J, Pohmann R, Scheffler K. Three-layered radio frequency coil arrangement for sodium MRI of the human brain at 9.4 Tesla. Magn Reson Med. 2016;75(2):906-916. doi:10.1002/mrm.25666
Benkhedah N, Hoffmann SH, Biller A, Nagel AM. Evaluation of adaptive combination of 30-channel head receive coil array data in 23Na MR imaging. Magn Reson Med. 2016;75(2):527-536. doi:10.1002/mrm.25572
Qian Y, Zhao T, Zheng H, Weimer J, Boada FE. High-resolution sodium imaging of human brain at 7 T. Magn Reson Med. 2012;68(1):227-233. doi:10.1002/mrm.23225
Gerhalter T, Chen AM, Dehkharghani S, et al. Global decrease in brain sodium concentration after mild traumatic brain injury. Brain Commun. 2021;3(2):fcab051. doi:10.1093/braincomms/fcab051
Stobbe RW, Beaulieu C. Residual quadrupole interaction in brain and its effect on quantitative sodium imaging. NMR Biomed. 2016;29(2):119-128. doi:10.1002/nbm.3376
Nagel AM, Laun FB, Weber MA, Matthies C, Semmler W, Schad LR. Sodium MRI using a density-adapted 3D radial acquisition technique. Magn Reson Med. 2009;62(6):1565-1573. doi:10.1002/mrm.22157
Walsh DO, Gmitro AF, Marcellin MW. Adaptive reconstruction of phased array MR imagery. Magn Reson Med. 2000;43(5):682-690. doi:10.1002/(SICI)1522-2594(200005)43:5%3C682::AID-MRM10%3E3.0.CO;2-G
Wilferth T, Muller M, Gast LV, et al. Motion-corrected (23) Na MRI of the human brain using interleaved (1) H 3D navigator images. Magn Reson Med. 2022;88(1):309-321. doi:10.1002/mrm.29221
Stobbe R, Beaulieu C. Advantage of sampling density weighted apodization over postacquisition filtering apodization for sodium MRI of the human brain. Magn Reson Med. 2008;60(4):981-986. doi:10.1002/mrm.21738
Konstandin S, Nagel AM. Performance of sampling density-weighted and postfiltered density-adapted projection reconstruction in sodium magnetic resonance imaging. Magn Reson Med. 2013;69(2):495-502. doi:10.1002/mrm.24255
Fessler JA, Sutton BP. Nonuniform fast Fourier transforms using min-max interpolation. IEEE Trans Signal Process. 2003;51(2):560-574. doi:10.1109/TSP.2002.807005
Niesporek SC, Hoffmann SH, Berger MC, et al. Partial volume correction for in vivo (23)Na-MRI data of the human brain. Neuroimage. 2015;112:353-363. doi:10.1016/j.neuroimage.2015.03.025
Lachner S, Ruck L, Niesporek SC, et al. Comparison of optimized intensity correction methods for (23)Na MRI of the human brain using a 32-channel phased array coil at 7 Tesla. Z Med Phys. 2020;30(2):104-115. doi:10.1016/j.zemedi.2019.10.004
Lommen JM, Flassbeck S, Behl NGR, et al. Probing the microscopic environment of (23) Na ions in brain tissue by MRI: On the accuracy of different sampling schemes for the determination of rapid, biexponential T2* decay at low signal-to-noise ratio. Magn Reson Med. 2018;80(2):571-584. doi:10.1002/mrm.27059
Nagel AM, Bock M, Hartmann C, et al. The potential of relaxation-weighted sodium magnetic resonance imaging as demonstrated on brain tumors. Invest Radiol. 2011;46(9):539-547. doi:10.1097/RLI.0b013e31821ae918
Popescu BF, Pirko I, Lucchinetti CF. Pathology of multiple sclerosis: Where do we stand? Continuum. 2013;19(4):901-921.
Thompson AJ, Banwell BL, Barkhof F, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2):162-173. doi:10.1016/S1474-4422(17)30470-2
Woessner DE. NMR relaxation of spin-3/2 nuclei: Effects of structure, order, and dynamics in aqueous heterogeneous systems. Concepts Magn Reson. 2001;13(5):294-325. doi:10.1002/cmr.1015
Wattjes MP, Ciccarelli O, Reich DS, et al. 2021 MAGNIMS-CMSC-NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. Lancet Neurol. 2021;20(8):653-670. doi:10.1016/S1474-4422(21)00095-8
Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8(2):135-160. doi:10.1177/096228029900800204
Harrington MG, Salomon RM, Pogoda JM, et al. Cerebrospinal fluid sodium rhythms. Cerebrospinal Fluid Res. 2010;7:3. doi:10.1186/1743-8454-7-3
Harrington MG, Fonteh AN, Cowan RP, et al. Cerebrospinal fluid sodium increases in migraine. Headache. 2006;46(7):1128-1135. doi:10.1111/j.1526-4610.2006.00445.x
Madelin G, Lee JS, Regatte RR, Jerschow A. Sodium MRI: methods and applications. Prog Nucl Magn Reson Spectrosc. 2014;79:14-47. doi:10.1016/j.pnmrs.2014.02.001
Meyer MM, Haneder S, Konstandin S, et al. Repeatability and reproducibility of cerebral (23)Na imaging in healthy subjects. BMC Med Imaging. 2019;19(1):26. doi:10.1186/s12880-019-0324-6
Riemer F, McHugh D, Zaccagna F, et al. Measuring tissue sodium concentration: Cross-vendor repeatability and reproducibility of (23) Na-MRI across two sites. J Magn Reson Imaging. 2019;50(4):1278-1284. doi:10.1002/jmri.26705
Cardinale F, Chinnici G, Bramerio M, et al. Validation of FreeSurfer-estimated brain cortical thickness: comparison with histologic measurements. Neuroinformatics. 2014;12(4):535-542. doi:10.1007/s12021-014-9229-2
Wang L, Lai HM, Thompson AJ, Miller DH. Survey of the distribution of lesion size in multiple sclerosis: implication for the measurement of total lesion load. J Neurol Neurosurg Psychiatry. 1997;63(4):452-455. doi:10.1136/jnnp.63.4.452
Kratzer FJ, Flassbeck S, Schmitter S, et al. 3D sodium ((23) Na) magnetic resonance fingerprinting for time-efficient relaxometric mapping. Magn Reson Med. 2021;86(5):2412-2425. doi:10.1002/mrm.28873
Burstein D, Springer CS Jr. Sodium MRI revisited. Magn Reson Med. 2019;82(2):521-524. doi:10.1002/mrm.27738
Lu A, Atkinson IC, Vaughn JT, Thulborn KR. Impact of gradient timing error on the tissue sodium concentration bioscale measured using flexible twisted projection imaging. J Magn Reson. 2011;213(1):176-181. doi:10.1016/j.jmr.2011.08.036