Clinical results of topography-guided laser-assisted in situ keratomileusis using the anterior corneal astigmatism axis and manifest refractive astigmatism axis.
Astigmatism
LASIK
Topography-guided
Vector analysis
Journal
Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie
ISSN: 1435-702X
Titre abrégé: Graefes Arch Clin Exp Ophthalmol
Pays: Germany
ID NLM: 8205248
Informations de publication
Date de publication:
Jan 2023
Jan 2023
Historique:
received:
20
12
2021
accepted:
19
07
2022
revised:
02
07
2022
pubmed:
28
7
2022
medline:
4
1
2023
entrez:
27
7
2022
Statut:
ppublish
Résumé
To evaluate the clinical results of primary topography-guided femtosecond laser-assisted in situ keratomileusis (TG-FS-LASIK) using the Pentacam-measured anterior corneal astigmatism axis (ACA) or manifest refractive astigmatism axis (MRA). In this prospective cohort study, all eyes were treated with primary TG-FS-LASIK using the manifest cylinder. Thirty-two right eyes were treated using ACA with axis disparity > 5° in the experimental group, and 32 right eyes were treated using MRA with axis disparity ≤ 5° in the control group. Visual, refractive outcomes, and corneal higher-order aberrations were evaluated. Vector analysis of astigmatism was performed using Alpins method with the ASSORT software. The mean logMAR UDVA in the experimental group was - 0.12 ± 0.06, - 0.05 ± 0.08, and - 0.08 ± 0.08 at 1-week, 1-month, and 3-month follow-up, whereas - 0.05 ± 0.06, - 0.12 ± 0.06, and - 0.14 ± 0.06 in the control group (p = 0.017, p < 0.001, and p = 0.003). At 3-month follow-up, 79% eyes achieved a UDVA of 20/16 or better, 9% gained one line of corrected distance visual acuity, the mean manifest cylinder was - 0.375 ± 0.254 D, 84% showed a manifest cylinder within ± 0.50 D, the mean magnitude of difference vector was 0.41 ± 0.35 D, the mean absolute angle of error (AE) was 7.36 ± 6.21°, and 41% exhibited an arithmetic AE within ± 5° in the experimental group, whereas 94%, 19%, - 0.203 ± 0.148 D, 100%, 0.21 ± 0.15 D, 3.39 ± 3.68°, and 69% in the control group (all p < 0.05). The postoperative and preoperative corneal spherical aberrations were comparable in both groups (p > 0.05). Primary topography-guided FS-LASIK using Pentacam-measured anterior corneal astigmatism axis exhibited slightly inferior clinical results to that using the manifest refractive astigmatism axis. Both methods achieved comparable postoperative and preoperative corneal spherical aberrations.
Identifiants
pubmed: 35895108
doi: 10.1007/s00417-022-05775-7
pii: 10.1007/s00417-022-05775-7
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
247-256Subventions
Organisme : National Natural Science Foundation of China
ID : 81670884
Organisme : National Natural Science Foundation of China
ID : 81873684
Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Alpins N (2017) Practical Astigmatism: Planning and Analysis. Slack Incorporated, New Jersey
Wallerstein A, Gauvin M, Qi SR, Cohen M (2020) Effect of the vectorial difference between manifest refractive astigmatism and anterior corneal astigmatism on topography-guided LASIK outcomes. J Refract Surg 36:449–458. https://doi.org/10.3928/1081597X-20200609-01
doi: 10.3928/1081597X-20200609-01
Kanellopoulos AJ (2016) Topography-modified refraction (TMR): adjustment of treated cylinder amount and axis to the topography versus standard clinical refraction in myopic topography-guided LASIK. Clin Ophthalmol 10:2213–2221. https://doi.org/10.2147/OPTH.S122345
doi: 10.2147/OPTH.S122345
Motwani M (2017) The use of WaveLight® Contoura to create a uniform cornea: the LYRA Protocol. Part 3: the results of 50 treated eyes. Clin Ophthalmol 11:915–921. https://doi.org/10.2147/OPTH.S133841
doi: 10.2147/OPTH.S133841
Lobanoff M, Stonecipher K, Tooma T, Wexler S, Potvin R (2020) Clinical outcomes after topography-guided LASIK: comparing results based on a new topography analysis algorithm with those based on manifest refraction. J Cataract Refract Surg 46:814–819. https://doi.org/10.1097/j.jcrs.0000000000000176
doi: 10.1097/j.jcrs.0000000000000176
Cao K, Liu L, Zhang T, Liu T, Bai J (2020) Mutual comparative analysis: a new topography-guided custom ablation protocol referencing subjective refraction to modify corneal topographic data. Eye Vis (Lond) 7:36. https://doi.org/10.1186/s40662-020-00201-7
doi: 10.1186/s40662-020-00201-7
Kim J, Choi SH, Lim DH, Yoon GJ, Chung TY (2020) Comparison of outcomes after topography-modified refraction versus wavefront-optimized versus manifest topography-guided LASIK. BMC Ophthalmol 20:192. https://doi.org/10.1186/s12886-020-01459-0
doi: 10.1186/s12886-020-01459-0
Wallerstein A, Gauvin M, Qi SR, Bashour M, Cohen M (2019) Primary topography-guided LASIK: treating manifest refractive astigmatism versus topography-measured anterior corneal astigmatism. J Refract Surg 35:15–23. https://doi.org/10.3928/1081597X-20181113-01
doi: 10.3928/1081597X-20181113-01
Wallerstein A, Caron-Cantin M, Gauvin M, Adiguzel E, Cohen M (2019) Primary topography-guided LASIK: refractive, visual, and subjective quality of vision outcomes for astigmatism ⩾2.00 diopters. J Refract Surg 35:78–86. https://doi.org/10.3928/1081597X-20181210-01
doi: 10.3928/1081597X-20181210-01
Zhang Y, Chen Y (2019) A randomized comparative study of topography-guided versus wavefront-optimized FS-LASIK for correcting myopia and myopic astigmatism. J Refract Surg 35:575–582. https://doi.org/10.3928/1081597X-20190819-01
doi: 10.3928/1081597X-20190819-01
Alpins N (2001) Astigmatism analysis by the Alpins method. J Cataract Refract Surg 27:31–49. https://doi.org/10.1016/S0886-3350(00)00798-7
doi: 10.1016/S0886-3350(00)00798-7
Shetty R, Francis M, Shroff R, Pahuja N, Khamar P, Girrish M, Nuijts RMMA, Sinha Roy A (2017) Corneal biomechanical changes and tissue remodeling after SMILE and LASIK. Invest Ophthalmol Vis Sci 58:5703–5712. https://doi.org/10.1167/iovs.17-22864
doi: 10.1167/iovs.17-22864
Fan L, Xiong L, Zhang B, Wang Z (2019) Longitudinal and regional non-uniform remodeling of corneal epithelium after topography-guided FS-LASIK. J Refract Surg 35:88–95. https://doi.org/10.3928/1081597X-20190104-01
doi: 10.3928/1081597X-20190104-01
Wallerstein A, Gauvin M, Cohen M (2018) WaveLight® Contoura topography-guided planning: contribution of anterior corneal higher-order aberrations and posterior corneal astigmatism to manifest refractive astigmatism. Clin Ophthalmol 12:1423–1426. https://doi.org/10.2147/OPTH.S169812
doi: 10.2147/OPTH.S169812
Koch DD, Ali SF, Weikert MP, Shirayama M, Jenkins R, Wang L (2012) Contribution of posterior corneal astigmatism to total corneal astigmatism. J Cataract Refract Surg 38:2080–2087. https://doi.org/10.1016/j.jcrs.2012.08.036
doi: 10.1016/j.jcrs.2012.08.036
Novis C (2000) Astigmatism and toric intraocular lenses. Curr Opin Ophthalmol 11:47–50. https://doi.org/10.1097/00055735-200002000-00007
doi: 10.1097/00055735-200002000-00007
Zhou W, Stojanovic A, Utheim TP (2016) Assessment of refractive astigmatism and simulated therapeutic refractive surgery strategies in coma-like-aberrations-dominant corneal optics. Eye Vis (Lond) 3:13. https://doi.org/10.1186/s40662-016-0044-8
doi: 10.1186/s40662-016-0044-8
Motwani M (2017) The use of WaveLight® Contoura to create a uniform cornea: the LYRA Protocol. Part 1: the effect of higher-order corneal aberrations on refractive astigmatism. Clin Ophthalmol 11:897–905. https://doi.org/10.2147/OPTH.S133839
doi: 10.2147/OPTH.S133839