Ports' criticality in international trade and global supply-chains.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
27 07 2022
Historique:
received: 11 11 2020
accepted: 11 07 2022
entrez: 27 7 2022
pubmed: 28 7 2022
medline: 30 7 2022
Statut: epublish

Résumé

We quantify the criticality of the world's 1300 most important ports for global supply chains by predicting the allocation of trade flows on the global maritime transport network, which we link to a global supply-chain database to evaluate the importance of ports for the economy. We find that 50% of global trade in value terms is maritime, with low-income countries and small islands being 1.5 and 2.0 times more reliant on their ports compared to the global average. The five largest ports globally handle goods that embody >1.4% of global output, while 40 ports add >10% of domestic output of the economies they serve, predominantly small islands. We identify critical cross-border infrastructure dependencies for some landlocked and island countries that rely on specific ports outside their jurisdiction. Our results pave the way for developing new strategies to enhance the resilience and sustainability of port infrastructure and maritime trade.

Identifiants

pubmed: 35896543
doi: 10.1038/s41467-022-32070-0
pii: 10.1038/s41467-022-32070-0
pmc: PMC9327979
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

4351

Informations de copyright

© 2022. The Author(s).

Références

Robinson, R. Ports as elements in value-driven chain systems: The new paradigm. Marit. Policy Manag. 29, 241–255 (2002).
doi: 10.1080/03088830210132623
Hesse, M. & Rodrigue, J. P. The transport geography of logistics and freight distribution. J. Transp. Geogr. 12, 171–184 (2004).
doi: 10.1016/j.jtrangeo.2003.12.004
UNCTAD. Key Statistics and Trends in International Trade 2020. (2021).
Notteboom, T., Pallis, A. & Rodrigue, J.-P. Port Economics, Management and Policy. (Routledge, 2021). https://doi.org/10.4324/9780429318184 .
Halim, R. A., Kwakkel, J. H. & Tavasszy, L. A. A scenario discovery study of the impact of uncertainties in the global container transport system on European ports. Futures 81, 148–160 (2016).
doi: 10.1016/j.futures.2015.09.004
Walsh, C. et al. Trade and trade-offs: Shipping in changing climates. Mar. Policy. 106, 103537 (2019).
Verschuur, J., Pant, R., Koks, E. & Hall, J. A systemic risk framework to improve the resilience of port and supply-chain networks to natural hazards. Marit. Econ. Logist. https://doi.org/10.1057/s41278-021-00204-8 (2022).
Notteboom, T., Pallis, T. & Rodrigue, J.-P. Disruptions and resilience in global container shipping and ports: the COVID-19 pandemic versus the 2008–2009 financial crisis. Marit. Econ. Logist. 23, 179–210 (2021).
doi: 10.1057/s41278-020-00180-5
Verschuur, J., Koks, E. E. & Hall, J. W. Global economic impacts of COVID-19 lockdown measures stand out in high-frequency shipping data. PLoS One. 16, e0248818 (2021).
Celasun, O., Hansen, N. & Mineshima, A. Supply Bottlenecks: Where, Why, How Much, and What Next. (IMF Working Papers, 2022).
Kaluza, P., Kölzsch, A., Gastner, M. T. & Blasius, B. The complex network of global cargo ship movements. J. R. Soc. Interface 7, 1–11 (2010).
doi: 10.1098/rsif.2009.0495
LaRocco, L. A. Suez Canal blockage is delaying an estimated $400 million an hour in goods. Transportation https://www.cnbc.com/2021/03/25/suez-canalblockage-is-delaying-an-estimated-400-million-an-hour-in-goods.html (2021).
Trepte, K. & Rice, J. B. An initial exploration of port capacity bottlenecks in the USA port system and the implications on resilience. Int. J. Shipp. Transp. Logist. 6, 339–355 (2014).
doi: 10.1504/IJSTL.2014.060800
Rousset, L. & Ducruet, C. Disruptions in Spatial Networks: a Comparative Study of Major Shocks Affecting Ports and Shipping Patterns. Netw. Spat. Econ. 20, 423–447 (2020).
doi: 10.1007/s11067-019-09482-5
Li, Z., Xu, M. & Shi, Y. Centrality in global shipping network basing on worldwide shipping areas. GeoJournal 80, 47–60 (2014).
doi: 10.1007/s10708-014-9524-3
Ducruet, C. & Zaidi, F. Maritime constellations: a complex network approach to shipping and ports. Marit. Policy Manag. 39, 151–168 (2012).
doi: 10.1080/03088839.2011.650718
Merk, O. M., Manshanden, W. J. J. & Droes, M. I. INTER-REGIONAL SPILLOVERS OF SEAPORTS: THE CASE OF NORTH-WEST EUROPE. Int. J. Transp. Econ. / Riv. internazionale di Econ. dei Trasp. 40, 401–417 (2013).
Wenz, L. et al. Regional and Sectoral Disaggregation of Multi-Regional Input–Output Tables – a Flexible Algorithm. Econ. Syst. Res. 27, 194–212 (2015).
doi: 10.1080/09535314.2014.987731
Venables, A. J. Spatial disparities in developing countries: Cities, regions, and international trade. J. Econ. Geogr. 5, 3–21 (2005).
doi: 10.1093/jnlecg/lbh051
Godar, J., Persson, U. M., Tizado, E. J. & Meyfroidt, P. Towards more accurate and policy relevant footprint analyses: Tracing fine-scale socio-environmental impacts of production to consumption. Ecol. Econ. 112, 25–35 (2015).
doi: 10.1016/j.ecolecon.2015.02.003
Moran, D., Giljum, S., Kanemoto, K. & Godar, J. From Satellite to Supply Chain: New Approaches Connect Earth Observation to Economic Decisions. One Earth. 3, 5–8 (2020).
doi: 10.1016/j.oneear.2020.06.007
Hanson, S. E. & Nicholls, R. J. Demand for Ports to 2050: Climate Policy, Growing Trade and the Impacts of Sea‐Level Rise. Earth’s Futur. 8, e2020EF001543 (2020).
Schim van der Loeff, W., Godar, J. & Prakash, V. A spatially explicit data-driven approach to calculating commodity-specific shipping emissions per vessel. J. Clean. Prod. 205, 895–908 (2018).
doi: 10.1016/j.jclepro.2018.09.053
Wang, X. T. et al. Trade-linked shipping CO2 emissions. Nat. Clim. Chang. 11, 945–951 (2021).
doi: 10.1038/s41558-021-01176-6
Rose, A. & Wei, D. Estimating the Economic Consequences of a Port Shutdown: the Special Role of Resilience. Econ. Syst. Res. 25, 212–232 (2013).
doi: 10.1080/09535314.2012.731379
Verschuur, J., Koks, E. E. & Hall, J. W. Port disruptions due to natural disasters: Insights into port and logistics resilience. Transp. Res. Part D. Transp. Environ. 85, 102393 (2020).
doi: 10.1016/j.trd.2020.102393
Los, B., Timmer, M. P. & de Vries, G. J. How global are global value chains? A new approach to measure international fragmentation. J. Reg. Sci. 55, 66–92 (2015).
doi: 10.1111/jors.12121
Maluck, J. & Donner, R. V. A network of networks perspective on global trade. PLoS One. 10, 1–24 (2015).
doi: 10.1371/journal.pone.0133310
Amador, J. & Cabral, S. Networks of Value-added Trade. World Econ. 40, 1291–1313 (2017).
doi: 10.1111/twec.12469
Dietzenbacher, E., Los, B., Stehrer, R., Timmer, M. & de Vries, G. the Construction of World Input-Output Tables in the Wiod Project. Econ. Syst. Res. 25, 71–98 (2013).
doi: 10.1080/09535314.2012.761180
Timmer, M. P., Dietzenbacher, E., Los, B., Stehrer, R. & de Vries, G. J. An Illustrated User Guide to the World Input-Output Database: The Case of Global Automotive Production. Rev. Int. Econ. 23, 575–605 (2015).
doi: 10.1111/roie.12178
Lenzen, M., Kanemoto, K., Moran, D. & Geschke, A. Mapping the structure of the world economy. Environ. Sci. Technol. 46, 8374–8381 (2012).
pubmed: 22794089 doi: 10.1021/es300171x
Lenzen, M. et al. The Global MRIO Lab–charting the world economy. Econ. Syst. Res. 29, 158–186 (2017).
doi: 10.1080/09535314.2017.1301887
Ducruet, C. The polarization of global container flows by interoceanic canals: geographic coverage and network vulnerability. Marit. Policy Manag. 43, 242–260 (2016).
doi: 10.1080/03088839.2015.1022612
Ducruet, C. Multilayer dynamics of complex spatial networks: The case of global maritime flows (1977–2008). J. Transp. Geogr. 60, 47–58 (2017).
doi: 10.1016/j.jtrangeo.2017.02.007
Peng, P., Yang, Y., Cheng, S., Lu, F. & Yuan, Z. Hub-and-spoke structure: Characterizing the global crude oil transport network with mass vessel trajectories. Energy 168, 966–974 (2019).
doi: 10.1016/j.energy.2018.11.049
Wang, N., Wu, N., Dong, L. L., Yan, H. K. & Wu, D. A study of the temporal robustness of the growing global container-shipping network. Sci. Rep. 6, 1–10 (2016).
Kojaku, S., Xu, M., Xia, H. & Masuda, N. Multiscale core-periphery structure in a global liner shipping network. Sci. Rep. 9, 1–15 (2019).
doi: 10.1038/s41598-018-35922-2
Xu, M., Pan, Q., Muscoloni, A., Xia, H. & Cannistraci, C. V. Modular gateway-ness connectivity and structural core organization in maritime network science. Nat. Commun. 11, 1–15 (2020).
UNCTAD. Review of Maritime Transport 2017 - Developments in International Seaborn Trade. (2017).
Martínez, L. M., Kauppila, J. & Castaing, M. International freight and related carbon dioxide emissions by 2050 new modeling tool. Transp. Res. Rec. 2477, 58–67 (2015).
doi: 10.3141/2477-07
Jonkeren, O., Rietveld, P., van Ommeren, J. & te Linde, A. Climate change and economic consequences for inland waterway transport in Europe. Reg. Environ. Chang. 14, 953–965 (2014).
Cristea, A., Hummels, D., Puzzello, L. & Avetisyan, M. Trade and the greenhouse gas emissions from international freight transport. J. Environ. Econ. Manag. 65, 153–173 (2013).
doi: 10.1016/j.jeem.2012.06.002
Arslanalp, S., Koepke, R. & Verschuur, J. Tracking Trade from Space: An Application to Pacific Island Countries. IMF Working Papers 2021, 1–40 (2021).
Hummels, D. Transportation costs and international trade in the second era of globalization. J. Econ. Perspect. 21, 237 (2007).
doi: 10.1257/jep.21.3.131
Buys, P., Deichmann, U. & Wheeler, D. Road network upgrading and overland trade expansion in sub-saharan Africa. J. Afr. Econ. 19, 399–432 (2010).
doi: 10.1093/jae/ejq006
UNCTAD. Review of Maritime Transport 2020. Review of Maritime Transport 2020 (United Nations Conference on Trade and Development, 2020).
Coe, N. M. Missing links: Logistics, governance and upgrading in a shifting global economy. Rev. Int. Polit. Econ. 21, 224–256 (2014).
doi: 10.1080/09692290.2013.766230
Hummels, D. L. & Schaur, G. Time as a trade barrier. Am. Econ. Rev. 103, 2935–2959 (2013).
doi: 10.1257/aer.103.7.2935
Ansón, J., Arvis, J. F., Boffa, M., Helble, M. & Shepherd, B. Time, uncertainty and trade flows. World Econ. 1–18 https://doi.org/10.1111/twec.12942 (2020).
Notteboom, T. E., Parola, F. & Satta, G. The relationship between transhipment incidence and throughput volatility in North European and Mediterranean container ports. J. Transp. Geogr. 74, 371–381 (2019).
doi: 10.1016/j.jtrangeo.2019.01.002
Zondag, B., Bucci, P., Gützkow, P. & de Jong, G. Port competition modeling including maritime, port, and hinterland characteristics. Marit. Policy Manag. 37, 179–194 (2010).
doi: 10.1080/03088831003700579
Notteboom, T. & Rodrigue, J. P. Containerisation, box logistics and global supply chains: The integration of ports and liner shipping networks. Marit. Econ. Logist. 10, 152–174 (2008).
doi: 10.1057/palgrave.mel.9100196
Ducruet, C. & Itoh, H. Regions and material flows: Investigating the regional branching and industry relatedness of port traffics in a global perspective. J. Econ. Geogr. 16, 805–830 (2016).
doi: 10.1093/jeg/lbv010
Ducruet, C., Itoh, H. & Joly, O. Ports and the local embedding of commodity flows. Pap. Reg. Sci. 94, 607–627 (2015).
doi: 10.1111/pirs.12083
Hummels, D., Ishii, J. & Yi, K. M. The nature and growth of vertical specialization in world trade. J. Int. Econ. 54, 75–96 (2001).
doi: 10.1016/S0022-1996(00)00093-3
Limão, N. & Venables, A. J. Infrastructure, geographical disadvantage, transport costs, and trade. World Bank Econ. Rev. 15, 451–479 (2001).
doi: 10.1093/wber/15.3.451
Fujita, M. & Mori, T. The role of ports in the making of major cities: Self-agglomeration and hub-effect. J. Dev. Econ. 49, 93–120 (1996).
doi: 10.1016/0304-3878(95)00054-2
Wang, Y. & Wang, N. The role of the port industry in China’s national economy: An input–output analysis. Transp. Policy 78, 1–7 (2019).
doi: 10.1016/j.tranpol.2019.03.007
Arvis, J. F., Duval, Y., Shepherd, B., Utoktham, C. & Raj, A. Trade costs in the developing world: 1996-2010. World Trade Rev. 15, 451–474 (2016).
doi: 10.1017/S147474561500052X
Janssens, C. et al. Global hunger and climate change adaptation through international trade. Nat. Clim. Chang. 10, 829–835 (2020).
Nechifor, V. & Ferrari, E. Trading for climate resilience. Nat. Clim. Chang. 10, 804–805 (2020).
doi: 10.1038/s41558-020-0875-0
Liu, H. et al. Emissions and health impacts from global shipping embodied in US–China bilateral trade. Nat. Sustain. 2, 1027–1033 (2019).
doi: 10.1038/s41893-019-0414-z
Chen, Z. & Rose, A. Economic resilience to transportation failure: a computable general equilibrium analysis. Transportation (Amst.). 45, 1009–1027 (2018).
de Jong, G. Mode Choice Models. Model. Freight Transp. 117–141 https://doi.org/10.1016/B978-0-12-410400-6.00006-9 (2013).
United Nations Statistical Division. UN Comtrade database. UN Comtrade database (2020). Available at: https://comtrade.un.org . (Accessed: 1st February 2020).
Gaulier, G. & Zignago, S. BACI: International Trade Database at the Product-level The 1994-2007 Version. 2010–2023 (CEPII Working Papers, 2010).
Tavasszy, L., Minderhoud, M., Perrin, J. F. & Notteboom, T. A strategic network choice model for global container flows: Specification, estimation and application. J. Transp. Geogr. 19, 1163–1172 (2011).
doi: 10.1016/j.jtrangeo.2011.05.005
Dietzenbacher, E. Fragmentation in an Inter-country Input-Output Framework. In Proc.18th International Input-Output Conference. 12 (2003).
Schultz, S. Approaches to Identifying Key Sectors Empirically by Means of Input-Output Analysis. J. Dev. Stud. 14, 77–96 (1977).
doi: 10.1080/00220387708421663
Temurshoev, U. & Oosterhaven, J. Analytical and empirical comparison of policy-relevant key sector measures. Spat. Econ. Anal. 9, 284–308 (2014).
doi: 10.1080/17421772.2014.930168
Dietzenbacher, E., van Burken, B. & Kondo, Y. Hypothetical extractions from a global perspective. Econ. Syst. Res. 31, 505–519 (2019).
doi: 10.1080/09535314.2018.1564135

Auteurs

J Verschuur (J)

Environmental Change Institute, University of Oxford, Oxford, UK. jasper.verschuur@keble.ox.ac.uk.

E E Koks (EE)

Environmental Change Institute, University of Oxford, Oxford, UK.
Institute for Environmental Studies, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.

J W Hall (JW)

Environmental Change Institute, University of Oxford, Oxford, UK.

Articles similaires

China Cities Humans Economic Development Commerce
Humans Adolescent Thailand Female Male
Aviation Hydrocarbons Humans Models, Economic Commerce

Classifications MeSH