Informing geometric deep learning with electronic interactions to accelerate quantum chemistry.
equivariance
machine learning
quantum chemistry
Journal
Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876
Informations de publication
Date de publication:
02 08 2022
02 08 2022
Historique:
entrez:
28
7
2022
pubmed:
29
7
2022
medline:
2
8
2022
Statut:
ppublish
Résumé
Predicting electronic energies, densities, and related chemical properties can facilitate the discovery of novel catalysts, medicines, and battery materials. However, existing machine learning techniques are challenged by the scarcity of training data when exploring unknown chemical spaces. We overcome this barrier by systematically incorporating knowledge of molecular electronic structure into deep learning. By developing a physics-inspired equivariant neural network, we introduce a method to learn molecular representations based on the electronic interactions among atomic orbitals. Our method, OrbNet-Equi, leverages efficient tight-binding simulations and learned mappings to recover high-fidelity physical quantities. OrbNet-Equi accurately models a wide spectrum of target properties while being several orders of magnitude faster than density functional theory. Despite only using training samples collected from readily available small-molecule libraries, OrbNet-Equi outperforms traditional semiempirical and machine learning-based methods on comprehensive downstream benchmarks that encompass diverse main-group chemical processes. Our method also describes interactions in challenging charge-transfer complexes and open-shell systems. We anticipate that the strategy presented here will help to expand opportunities for studies in chemistry and materials science, where the acquisition of experimental or reference training data is costly.
Identifiants
pubmed: 35901215
doi: 10.1073/pnas.2205221119
pmc: PMC9351474
doi:
Substances chimiques
Small Molecule Libraries
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2205221119Références
Nat Chem. 2020 Oct;12(10):945-951
pubmed: 32929248
J Am Chem Soc. 2022 Feb 2;144(4):1971-1985
pubmed: 35049279
J Chem Theory Comput. 2022 Mar 8;18(3):1607-1618
pubmed: 35175045
J Chem Theory Comput. 2017 May 9;13(5):1989-2009
pubmed: 28418654
J Chem Inf Model. 2022 Feb 28;62(4):785-800
pubmed: 35119861
J Chem Theory Comput. 2020 Jul 14;16(7):4226-4237
pubmed: 32441933
Phys Chem Chem Phys. 2022 May 11;24(18):10775-10783
pubmed: 35470831
Proc Natl Acad Sci U S A. 2022 Aug 2;119(31):e2205221119
pubmed: 35901215
Proc Natl Acad Sci U S A. 2020 Aug 25;117(34):20520-20529
pubmed: 32796105
Science. 2021 Dec 10;374(6573):1385-1389
pubmed: 34882476
Chem Sci. 2019 Sep 9;10(41):9424-9432
pubmed: 32055318
J Chem Theory Comput. 2019 Mar 12;15(3):1652-1671
pubmed: 30741547
J Chem Theory Comput. 2013 Jan 8;9(1):263-72
pubmed: 26589028
J Chem Phys. 2022 Mar 21;156(11):114101
pubmed: 35317562
Nat Rev Drug Discov. 2019 Jun;18(6):463-477
pubmed: 30976107
Proc Natl Acad Sci U S A. 1987 Dec;84(24):8898-902
pubmed: 3122208
J Comput Chem. 2014 Jul 30;35(20):1509-16
pubmed: 24931471
J Chem Theory Comput. 2019 Jun 11;15(6):3678-3693
pubmed: 31042390
Nat Commun. 2020 Jul 14;11(1):3509
pubmed: 32665540
Phys Rev B Condens Matter. 1988 Jan 15;37(2):785-789
pubmed: 9944570
J Chem Phys. 2019 Feb 14;150(6):064105
pubmed: 30769998
Sci Adv. 2017 Dec 13;3(12):e1701816
pubmed: 29242828
Phys Rev Lett. 2021 Jan 22;126(3):036401
pubmed: 33543980
Phys Chem Chem Phys. 2006 May 7;8(17):1985-93
pubmed: 16633685
Nature. 2004 Dec 16;432(7019):862-5
pubmed: 15602552
J Chem Phys. 2020 Jul 14;153(2):024113
pubmed: 32668949
Phys Rev Lett. 2007 Apr 6;98(14):146401
pubmed: 17501293
Science. 2021 Aug 27;373(6558):1047-1051
pubmed: 34446608
J Comput Chem. 2004 Oct;25(13):1584-604
pubmed: 15264253
J Chem Theory Comput. 2020 Jul 14;16(7):4192-4202
pubmed: 32543858
J Am Chem Soc. 1986 Sep 1;108(19):5708-11
pubmed: 22175316
J Chem Phys. 2021 Feb 14;154(6):064103
pubmed: 33588555
Nat Commun. 2022 May 4;13(1):2453
pubmed: 35508450
Nature. 2020 Sep;585(7824):217-220
pubmed: 32908269
J Chem Inf Model. 2021 Mar 22;61(3):1066-1082
pubmed: 33629839
J Chem Phys. 2017 Oct 28;147(16):161727
pubmed: 29096505
J Chem Phys. 2020 Sep 28;153(12):124111
pubmed: 33003742
J Chem Phys. 2018 Jun 28;148(24):241717
pubmed: 29960351
J Chem Phys. 2016 Nov 7;145(17):170901
pubmed: 27825224
J Chem Phys. 2018 Feb 14;148(6):064104
pubmed: 29448802
J Comput Chem. 2008 Jan 30;29(2):167-75
pubmed: 17568435
Sci Adv. 2017 May 05;3(5):e1603015
pubmed: 28508076
Nat Commun. 2021 Dec 2;12(1):7022
pubmed: 34857738
J Phys Chem Lett. 2016 Jun 16;7(12):2197-203
pubmed: 27203625
J Phys Chem B. 2021 Apr 15;125(14):3598-3612
pubmed: 33798336
J Chem Phys. 2019 Apr 7;150(13):131103
pubmed: 30954042
Nucleic Acids Res. 2017 Jan 4;45(D1):D945-D954
pubmed: 27899562
J Am Chem Soc. 2007 May 2;129(17):5710-8
pubmed: 17411048
J Phys Chem A. 2013 Mar 14;117(10):2269-77
pubmed: 23379303
J Cheminform. 2019 Feb 14;11(1):14
pubmed: 30767086
J Chem Theory Comput. 2018 Sep 11;14(9):4772-4779
pubmed: 30040892
Phys Chem Chem Phys. 2017 Dec 13;19(48):32184-32215
pubmed: 29110012
Phys Chem Chem Phys. 2005 Sep 21;7(18):3297-305
pubmed: 16240044
Sci Data. 2017 Dec 19;4:170193
pubmed: 29257127
J Chem Theory Comput. 2015 Jun 9;11(6):2473-86
pubmed: 26575547
J Phys Chem A. 2020 Sep 3;124(35):7155-7165
pubmed: 32786985
J Cheminform. 2020 Sep 1;12(1):51
pubmed: 33431044
Phys Rev Lett. 2018 Apr 6;120(14):143001
pubmed: 29694129
ACS Cent Sci. 2020 Apr 22;6(4):513-524
pubmed: 32342001
Nat Chem. 2014 Sep;6(9):765-73
pubmed: 25143210
Sci Data. 2014 Aug 05;1:140022
pubmed: 25977779
J Chem Phys. 2020 Jan 31;152(4):044107
pubmed: 32007071
J Chem Theory Comput. 2018 Nov 13;14(11):5764-5776
pubmed: 30351008
Nat Commun. 2019 Jul 1;10(1):2903
pubmed: 31263102
J Chem Theory Comput. 2015 May 12;11(5):2087-96
pubmed: 26574412