Rhein induces changes in the lysosomal compartment of HeLa cells.
Acridine Orange
/ metabolism
Anthraquinones
/ pharmacology
Apoptosis
Autophagy
Caspase 3
/ metabolism
Cathepsin D
/ metabolism
Chloroquine
/ metabolism
HeLa Cells
Humans
Lysosomes
/ metabolism
Neutral Red
/ metabolism
Oxides
/ metabolism
Proto-Oncogene Proteins c-bcl-2
/ metabolism
Reactive Oxygen Species
/ metabolism
apoptosis
autophagy
lysosomal cell death
oxidative stress
rhein
Journal
Journal of cellular biochemistry
ISSN: 1097-4644
Titre abrégé: J Cell Biochem
Pays: United States
ID NLM: 8205768
Informations de publication
Date de publication:
09 2022
09 2022
Historique:
revised:
17
06
2022
received:
03
01
2022
accepted:
15
07
2022
pubmed:
29
7
2022
medline:
20
9
2022
entrez:
28
7
2022
Statut:
ppublish
Résumé
Rhein is an anthraquinone found in Rheum palmatum, used in Chinese medicine. Due to potential anticancer properties, the study assessed its effect on the lysosomal compartment, which indirectly influences cell death. The experiment was performed on HeLa cells by treating them with rhein at concentrations of 100-300 µM. LC3-II protein and caspase 3/7 activity, level of apoptosis, the concentration of reactive oxide species (ROS), and mitochondrial potential (Δψm) were evaluated by the cytometric method. To evaluate the permeability of the lysosomal membrane (LMP), staining with acridine orange and the assessment of activity of cathepsin D and L in the lysosomal and extralysosomal fractions were used. Cell viability was assessed by -(3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) (MTT) and neutral red (NR) assays. Changes in cells were also demonstrated at the level of electron, optical, confocal, and fluorescence microscopy. Inhibition of autophagy was done using chloroquine. Rhein-induced degradation processes were confirmed by an increase in the number of primary lysosomes, autophagosomes, and autolysosomes. At high concentrations, rhein caused the generation of ROS, which induced LMP expressed by quenching of acridine orange fluorescence. These results correlated with a reduction of lysosomes, as visualized in graphical modeling, with the decreased uptake of NR by lysosomes, and increased activity of cathepsin D and L in the extralysosomal fraction. The studies also showed an increase in the activity of caspase 3/7 and a decrease in the expression of Bcl-2 protein, indicative of rhein-stimulated apoptosis. At the same time, we demonstrated that preincubation of cells with chloroquine inhibited rhein-induced autophagy and contributed to increased cytotoxicity to HeLa cells. Rhein also induced DNA damage and led to cycle arrest in the S phase. Our results indicate that rhein, by inducing changes in the lysosomal compartment, indirectly affects apoptosis of HeLa cells and in combination with autophagy inhibitors may be an effective form of anticancer therapy.
Substances chimiques
Anthraquinones
0
Oxides
0
Proto-Oncogene Proteins c-bcl-2
0
Reactive Oxygen Species
0
Neutral Red
261QK3SSBH
Chloroquine
886U3H6UFF
Caspase 3
EC 3.4.22.-
Cathepsin D
EC 3.4.23.5
Acridine Orange
F30N4O6XVV
rhein
YM64C2P6UX
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1506-1524Subventions
Organisme : Narodowe Centrum Nauki
ID : 2019/03/X/NZ3/00209
Informations de copyright
© 2022 Wiley Periodicals LLC.
Références
Degenhardt K, Mathew R, Beaudoin B, et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell. 2006;10(1):51-64. doi:10.1016/j.ccr.2006.06.001
Qu X, Yu J, Bhagat G, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest. 2003;112(12):1809-1820. doi:10.1172/JCI20039
Amaravadi RK, Yu D, Lum JJ, et al. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest. 2007;117(2):326-336. doi:10.1172/JCI28833
Yang ZJ, Chee CE, Huang S, Sinicrope FA. The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther. 2011;10(9):1533-1541. doi:10.1158/1535-7163.MCT-11-0047
Chang WC, Chu MT, Hsu CY, et al. Rhein, an anthraquinone drug, suppresses the NLRP3 inflammasome and macrophage activation in urate Crystal-Induced gouty inflammation. Am J Chin Med. 2019;47(1):135-151. doi:10.1142/S0192415X19500071
de Oliveira P, Termini L., Durigon E. L., Lepique A. P., Sposito A. C., Boccardo E. Diacerein: a potential multi-target therapeutic drug for COVID-19. Med Hypotheses. 2020;144:109920. doi:10.1016/j.mehy.2020.109920
Zhou YX, Xia W, Yue W, Peng C, Rahman K, Zhang H. Rhein: a review of pharmacological activities. Evid Based Complement Alternat Med. 2015;2015:578107. doi:10.1155/2015/578107
Deitersen J, El-Kashef DH, Proksch P, Stork B. Anthraquinones and autophagy-three rings to rule them all? Bioorg Med Chem. 2019;27(20):115042. doi:10.1016/j.bmc.2019.115042
Joung DK, Joung H, Yang DW, et al. Synergistic effect of rhein in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus. Exp Ther Med. 2012;3(4):608-612. doi:10.3892/etm.2012.459
Wang H, Yang D, Li L, Yang S, Du G, Lu Y. Anti-inflammatory effects and mechanisms of rhein, an anthraquinone compound, and its applications in treating arthritis: a review. Nat Prod Bioprospect. 2020;10(6):445-452. doi:10.1007/s13659-020-00272-y
Bi F, Ma H, Ji C, Chang C, Liu W, Xie K. Rhein protects against neurological deficits after traumatic brain injury in mice via inhibiting neuronal pyroptosis. Front Pharmacol. 2020;11:564367. doi:10.3389/fphar.2020.564367
Xu X, Lv H, Xia Z, et al. Rhein exhibits antioxidative effects similar to Rhubarb in a rat model of traumatic brain injury. BMC Complement Altern Med. 2017;17(1):140. doi:10.1186/s12906-017-1655-x
Heo SK, Yun HJ, Park WH, Park SD. Rhein inhibits TNF-alpha-induced human aortic smooth muscle cell proliferation via mitochondrial-dependent apoptosis. J Vasc Res. 2009;46(4):375-386. doi:10.1159/000189798
Du H, Shao JQ, Gu P, Wang J, Liu ZH. [Effect of early intervention with rhein on islet function in db/db mice]. Nan Fang Yi Ke Da Xue Xue Bao. 2011;31(9):1526-1529.
Liu J, Chen Z, Zhang Y, et al. Rhein protects pancreatic beta-cells from dynamin-related protein-1-mediated mitochondrial fission and cell apoptosis under hyperglycemia. Diabetes. 2013;62(11):3927-3935. doi:10.2337/db13-0251
Bian DX, Liu J, Lu L, et al. [Protective effects of rhein on hepatic progression in HBV-transgenic mice with nonalcoholic steatohepatitis induced by a high-fat diet]. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi. 2013;27(5):328-331.
Sheng X, Wang M, Lu M, Xi B, Sheng H, Zang YQ. Rhein ameliorates fatty liver disease through negative energy balance, hepatic lipogenic regulation, and immunomodulation in diet-induced obese mice. Am J Physiol Endocrinol Metab. 2011;300(5):E886-E893. doi:10.1152/ajpendo.00332.2010
He D, Lee L, Yang J, Wang X. Preventive effects and mechanisms of rhein on renal interstitial fibrosis in obstructive nephropathy. Biol Pharm Bull. 2011;34(8):1219-1226. doi:10.1248/bpb.34.1219
Khan IA, Nasiruddin M, Haque SF, Khan RA. Evaluation of rhubarb supplementation in stages 3 and 4 of chronic kidney disease: a randomized clinical trial. Int J Chronic Dis. 2014;2014:789340. doi:10.1155/2014/789340
Yu DQ, Gao Y, Liu XH. [Effects of rhein on the hypertrophy of renal proximal tubular epithelial cells induced by high glucose and angiotensin II in rats]. Zhong Yao Cai. 2010;33(4):570-574.
Moldovan F, Pelletier JP, Jolicoeur FC, Cloutier JM, Martel-Pelletier J. Diacerhein and rhein reduce the ICE-induced IL-1beta and IL-18 activation in human osteoarthritic cartilage. Osteoarthritis Cartilage. 2000;8(3):186-196. doi:10.1053/joca.1999.0289
Mazouri SE, Aanniz T, Touhtouh J, et al. Anthraquinones: a promising multi-target therapeutic scaffold to treat Covid-19. Int J Appl Biol Pharm. 2021;12:338-355.
Henamayee S, Banik K, Sailo BL, et al. Therapeutic emergence of rhein as a potential anticancer drug: a review of its molecular targets and anticancer properties. Molecules. 2020;25(10):2278. doi:10.3390/molecules25102278
Shen Z, Zhu B, Li J, Qin L. Rhein augments antiproliferative effects of atezolizumab based on breast cancer (4T1) regression. Planta Med. 2019;85(14-15):1143-1149. doi:10.1055/a-1012-7034
Ren B, Guo W, Tang Y, et al. Rhein inhibits the migration of ovarian cancer cells through down-regulation of matrix metalloproteinases. Biol Pharm Bull. 2019;42(4):568-572. doi:10.1248/bpb.b18-00431
Bu T, Wang C, Jin H, et al. Organic anion transporters and PI3K-AKT-mTOR pathway mediate the synergistic anticancer effect of pemetrexed and rhein. J Cell Physiol. 2020;235(4):3309-3319. doi:10.1002/jcp.29218
Yang L, Li J, Xu L, et al. Rhein shows potent efficacy against non-small-cell lung cancer through inhibiting the STAT3 pathway. Cancer Manag Res. 2019;11:1167-1176. doi:10.2147/CMAR.S171517
Zhuang Y, Bai Y, Hu Y, et al. Rhein sensitizes human colorectal cancer cells to EGFR inhibitors by inhibiting STAT3 pathway. Onco Targets Ther. 2019;12:5281-5291. doi:10.2147/OTT.S206833
Lin YJ, Zhen YZ, Zhao YF, Wei J, Hu G. Rhein lysinate induced S-phase arrest and increased the anti-tumor activity of 5-FU in HeLa cells. Am J Chin Med. 2011;39(4):817-825. doi:10.1142/S0192415X11009226
Liu J, Zhen YZ, Cui J, et al. Dynamic influence of rhein lysinate on HeLa cells. Int J Oncol. 2018;53(5):2047-2055. doi:10.3892/ijo.2018.4554
Liu S, Wang J, Shao T, et al. The natural agent rhein induces beta-catenin degradation and tumour growth arrest. J Cell Mol Med. 2018;22(1):589-599. doi:10.1111/jcmm.13346
Augustijns P, Geusens P, Verbeke N. Chloroquine levels in blood during chronic treatment of patients with rheumatoid arthritis. Eur J Clin Pharmacol. 1992;42(4):429-433. doi:10.1007/BF00280130
Lesiak A, Narbutt J, Sysa-Jedrzejowska A, Lukamowicz J, McCauliffe DP, Wozniacka A. Effect of chloroquine phosphate treatment on serum MMP-9 and TIMP-1 levels in patients with systemic lupus erythematosus. Lupus. 2010;19(6):683-688. doi:10.1177/0961203309356455
Kung CP, Budina A, Balaburski G, Bergenstock MK, Murphy M. Autophagy in tumor suppression and cancer therapy. Crit Rev Eukaryot Gene Expr. 2011;21(1):71-100. doi:10.1615/critreveukargeneexpr.v21.i1.50
Tanida I, Ueno T, Kominami E. LC3 and autophagy. Methods Mol Biol. 2008;445:77-88. doi:10.1007/978-1-59745-157-4_4
Ueno T, Komatsu M. Monitoring autophagy flux and activity: principles and applications. BioEssays. 2020;42(11):e2000122. doi:10.1002/bies.202000122
Saftig P, Klumperman J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol. 2009;10(9):623-635. doi:10.1038/nrm2745
Bonam SR, Wang F, Muller S. Lysosomes as a therapeutic target. Nat Rev Drug Discov. 2019;18(12):923-948. doi:10.1038/s41573-019-0036-1
Duprez L, Wirawan E, Vanden Berghe T, Vandenabeele P. Major cell death pathways at a glance. Microbes Infect. 2009;11(13):1050-1062. doi:10.1016/j.micinf.2009.08.013
Domagala A, Fidyt K, Bobrowicz M, Stachura J, Szczygiel K, Firczuk M. Typical and atypical inducers of lysosomal cell death: a promising anticancer strategy. Int J Mol Sci. 2018;19(8):2256. doi:10.3390/ijms19082256
Tang T, Yang ZY, Wang D, et al. The role of lysosomes in cancer development and progression. Cell Biosci. 2020;10(1):131. doi:10.1186/s13578-020-00489-x
Groth-Pedersen L, Ostenfeld MS, Hoyer-Hansen M, Nylandsted J, Jaattela M. Vincristine induces dramatic lysosomal changes and sensitizes cancer cells to lysosome-destabilizing siramesine. Cancer Res. 2007;67(5):2217-2225. doi:10.1158/0008-5472.CAN-06-3520
Król T. Vincristine-induced autophagy in mouse liver. Acta Biol Cracov, Ser Zool. 1996;38:5-12.
Boya P. Lysosomal function and dysfunction: mechanism and disease. Antioxid Redox Signal. 2012;17(5):766-774. doi:10.1089/ars.2011.4405
Broker LE, Huisman C, Span SW, Rodriguez JA, Kruyt FA, Giaccone G. Cathepsin B mediates caspase-independent cell death induced by microtubule stabilizing agents in non-small cell lung cancer cells. Cancer Res. 2004;64(1):27-30. doi:10.1158/0008-5472.can-03-3060
Krol T. Activity of lysosomal system in mouse liver after taxol administration. Gen Pharmacol. 1998;30(2):239-243. doi:10.1016/s0306-3623(97)00091-8
Eriksson I, Joosten M, Roberg K, Ollinger K. The histone deacetylase inhibitor trichostatin A reduces lysosomal pH and enhances cisplatin-induced apoptosis. Exp Cell Res. 2013;319(1):12-20. doi:10.1016/j.yexcr.2012.10.004
Puissant A, Colosetti P, Robert G, Cassuto JP, Raynaud S, Auberger P. Cathepsin B release after imatinib-mediated lysosomal membrane permeabilization triggers BCR-ABL cleavage and elimination of chronic myelogenous leukemia cells. Leukemia. 2010;24(1):115-124. doi:10.1038/leu.2009.233
Amantini C, Morelli MB, Santoni M, et al. Sorafenib induces cathepsin B-mediated apoptosis of bladder cancer cells by regulating the Akt/PTEN pathway. The Akt inhibitor, perifosine, enhances the sorafenib-induced cytotoxicity against bladder cancer cells. Oncoscience. 2015;2(4):395-409. doi:10.18632/oncoscience.147
Stamelos VA, Fisher N, Bamrah H, et al. The BH3 mimetic obatoclax accumulates in lysosomes and causes their alkalinization. PLoS One. 2016;11(3):e0150696. doi:10.1371/journal.pone.0150696
Trybus W, Krol G, Trybus E, Stachurska A, Kopacz- Bednarska A, Krol T. Aloe-emodin influence on the lysosomal compartment of hela cells. Asian Pac J Cancer Prev. 2017;18(12):3273-3279. doi:10.22034/APJCP.2017.18.12.3273
Trybus W, Krol T, Trybus E, Kopacz-Bednarska A, Krol G, Karpowicz E. Changes in the lysosomal system of cervical cancer cells induced by emodin action. Anticancer Res. 2017;37(11):6087-6096. doi:10.21873/anticanres.12057
Trybus W, Krol T, Trybus E, Stachurska A, Krol G. The potential antitumor effect of chrysophanol in relation to cervical cancer cells. J Cell Biochem. 2021;122(6):639-652. doi:10.1002/jcb.29891
Trybus W, Król T, Trybus E, Stachurska A. Physcion induces potential anticancer effects in cervical cancer cells. Cells. 2021;10(8):1-15.
Choi SH, Choi DH, Lee JJ, Park MS, Chun BG. Imidazoline drugs stabilize lysosomes and inhibit oxidative cytotoxicity in astrocytes. Free Radic Biol Med. 2002;32(5):394-405. doi:10.1016/s0891-5849(01)00819-x
Kurz T, Terman A, Gustafsson B, Brunk UT. Lysosomes in iron metabolism, ageing and apoptosis. Histochem Cell Biol. 2008;129(4):389-406. doi:10.1007/s00418-008-0394-y
Terman A, Kurz T, Gustafsson B, Brunk UT. Lysosomal labilization. IUBMB Life. 2006;58(9):531-539. doi:10.1080/15216540600904885
Aits S, Jaattela M. Lysosomal cell death at a glance. J Cell Sci. 2013;126(Pt 9):1905-1912. doi:10.1242/jcs.091181
Turk B, Turk D, Turk V. Protease signalling: the cutting edge. EMBO J. 2012;31(7):1630-1643. doi:10.1038/emboj.2012.42
Benes P, Vetvicka V, Fusek M. Cathepsin D-many functions of one aspartic protease. Crit Rev Oncol Hematol. 2008;68(1):12-28. doi:10.1016/j.critrevonc.2008.02.008
Kavcic N, Pegan K, Turk B. Lysosomes in programmed cell death pathways: from initiators to amplifiers. Biol Chem. 2017;398(3):289-301. doi:10.1515/hsz-2016-0252
Leist M, Jaattela M. Triggering of apoptosis by cathepsins. Cell Death Differ. 2001;8(4):324-326. doi:10.1038/sj.cdd.4400859
Johansson AC, Appelqvist H, Nilsson C, Kagedal K, Roberg K, Ollinger K. Regulation of apoptosis-associated lysosomal membrane permeabilization. Apoptosis. 2010;15(5):527-540. doi:10.1007/s10495-009-0452-5
Fehrenbacher N, Jäättelä M. Lysosomes as targets for cancer therapy. Cancer Res. 2005;65(8):2993-2995.
Kallunki T, Olsen OD, Jaattela M. Cancer-associated lysosomal changes: friends or foes? Oncogene. 2013;32(16):1995-2004. doi:10.1038/onc.2012.292
Kirkegaard T, Jaattela M. Lysosomal involvement in cell death and cancer. Biochim Biophys Acta. 2009;1793(4):746-754. doi:10.1016/j.bbamcr.2008.09.008
Karch J, Schips TG, Maliken BD, et al. Autophagic cell death is dependent on lysosomal membrane permeability through Bax and Bak. eLife. 2017;6:e30543. doi:10.7554/eLife.30543
Levada K, Pshenichnikov S, Omelyanchik A, et al. Progressive lysosomal membrane permeabilization induced by iron oxide nanoparticles drives hepatic cell autophagy and apoptosis. Nano Converg. 2020;7(1):17. doi:10.1186/s40580-020-00228-5
Codogno P, Meijer AJ. Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ. 2005;12(Suppl 2):1509-1518. doi:10.1038/sj.cdd.4401751
Li M, Gao P, Zhang J. Crosstalk between autophagy and apoptosis: potential and emerging therapeutic targets for cardiac diseases. Int J Mol Sci. 2016;17(3):332. doi:10.3390/ijms17030332
Liu T, Zhang J, Li K, Deng L, Wang H. Combination of an autophagy inducer and an autophagy inhibitor: a smarter strategy emerging in cancer therapy. Front Pharmacol. 2020;11:408. doi:10.3389/fphar.2020.00408
Pattingre S, Espert L, Biard-Piechaczyk M, Codogno P. Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie. 2008;90(2):313-323. doi:10.1016/j.biochi.2007.08.014
Surova O, Zhivotovsky B. Various modes of cell death induced by DNA damage. Oncogene. 2013;32(33):3789-3797. doi:10.1038/onc.2012.556