Pathological substrate of memory impairment in multiple system atrophy.


Journal

Neuropathology and applied neurobiology
ISSN: 1365-2990
Titre abrégé: Neuropathol Appl Neurobiol
Pays: England
ID NLM: 7609829

Informations de publication

Date de publication:
12 2022
Historique:
revised: 12 07 2022
received: 20 01 2022
accepted: 23 07 2022
pubmed: 31 7 2022
medline: 4 11 2022
entrez: 30 7 2022
Statut: ppublish

Résumé

Synaptic dysfunction in Parkinson's disease is caused by propagation of pathogenic α-synuclein between neurons. Previously, in multiple system atrophy (MSA), pathologically characterised by ectopic deposition of abnormal α-synuclein predominantly in oligodendrocytes, we demonstrated that the occurrence of memory impairment was associated with the number of α-synuclein-positive neuronal cytoplasmic inclusions (NCIs) in the hippocampus. In the present study, we aimed to investigate how abnormal α-synuclein in the hippocampus can lead to memory impairment. We performed pathological and biochemical analyses using a mouse model of adult-onset MSA and human cases (MSA, N = 25; Parkinson's disease, N = 3; Alzheimer's disease, N = 2; normal controls, N = 11). In addition, the MSA model mice were examined behaviourally and physiologically. In the MSA model, inducible human α-synuclein was first expressed in oligodendrocytes and subsequently accumulated in the cytoplasm of excitatory hippocampal neurons (NCI-like structures) and their presynaptic nerve terminals with the development of memory impairment. α-Synuclein oligomers increased simultaneously in the hippocampus of the MSA model. Hippocampal dendritic spines also decreased in number, followed by suppression of long-term potentiation. Consistent with these findings obtained in the MSA model, post-mortem analysis of human MSA brain tissues showed that cases of MSA with memory impairment developed more NCIs in excitatory hippocampal neurons along with α-synuclein oligomers than those without. Our results provide new insights into the role of α-synuclein oligomers as a possible pathological cause of memory impairment in MSA.

Identifiants

pubmed: 35906771
doi: 10.1111/nan.12844
doi:

Substances chimiques

alpha-Synuclein 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e12844

Subventions

Organisme : Medical Research Council
ID : MC_EX_MR/N50192X/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : N013255/1
Pays : United Kingdom

Informations de copyright

© 2022 British Neuropathological Society.

Références

Burré J, Sharma M, Tsetsenis T, Buchman V, Etherton MR, Südhof TC. Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science. 2010;329(5999):1663-1667. doi:10.1126/science.1195227
Bendor JT, Logan TP, Edwards RH. The function of α-synuclein. Neuron. 2013;79(6):1044-1066. doi:10.1016/j.neuron.2013.09.004
Heras-Garvin A, Stefanova N. From synaptic protein to prion: the long and controversial journey of α-synuclein. Front Synaptic Neurosci. 2020;12:584536. doi:10.3389/fnsyn.2020.584536
Weinreb PH, Zhen W, Poon AW, Conway KA, Lansbury PT Jr. NACP, a protein implicated in Alzheimer's disease and learning, is natively unfolded. Biochemistry. 1996;35(43):13709-13715. doi:10.1021/bi961799n
Wong YC, Krainc D. α-Synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies. Nat Med. 2017;23(2):1-13. doi:10.1038/nm.4269
Spillantini MG, Crowther RA, Jakes R, Cairns NJ, Lantos PL, Goedert M. Filamentous alpha-synuclein inclusions link multiple system atrophy with Parkinson's disease and dementia with Lewy bodies. Neurosci Lett. 1998;251(3):205-208. doi:10.1016/S0304-3940(98)00504-7
Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M. α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with Lewy bodies. Proc Natl Acad Sci U S a. 1998;95(11):6469-6473. doi:10.1073/pnas.95.11.6469
Wakabayashi K, Yoshimoto M, Tsuji S, Takahashi H. α-Synuclein immunoreactivity in glial cytoplasmic inclusions in multiple system atrophy. Neurosci Lett. 1998;249:180-182.
Martin ZS, Neugebauer V, Dineley KT, et al. α-Synuclein oligomers oppose long-term potentiation and impair memory through a calcineurin-dependent mechanism: relevance to human synucleopathic diseases. J Neurochem. 2012;120(3):440-452. doi:10.1111/j.1471-4159.2011.07576.x
Diógenes MJ, Dias RB, Rombo DM, et al. Extracellular alpha-synuclein oligomers modulate synaptic transmission and impair LTP via NMDA-receptor activation. J Neurosci. 2012;32(34):11750-11762. doi:10.1523/JNEUROSCI.0234-12.2012
Rockenstein E, Nuber S, Overk CR, et al. Accumulation of oligomer-prone α-synuclein exacerbates synaptic and neuronal degeneration in vivo. Brain. 2014;137(5):1496-1513. doi:10.1093/brain/awu057
Ferreira DG, Temido-Ferreira M, Vicente Miranda H, et al. α-Synuclein interacts with PrPC to induce cognitive impairment through mGluR5 and NMDAR2B. Nat Neurosci. 2017;20(11):1569-1579. doi:10.1038/nn.4648
Durante V, de Iure A, Loffredo V, et al. Alpha-synuclein targets GluN2A NMDA receptor subunit causing striatal synaptic dysfunction and visuospatial memory alteration. Brain. 2019;142(5):1365-1385. doi:10.1093/brain/awz065
Conway KA, Lee SJ, Rochet JC, Ding TT, Williamson RE, Lansbury PT Jr. Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson's disease: implications for pathogenesis and therapy. Proc Natl Acad Sci U S a. 2000;97(2):571-576. doi:10.1073/pnas.97.2.571
Winner B, Jappelli R, Maji SK, et al. In vivo demonstration that alpha-synuclein oligomers are toxic. Proc Natl Acad Sci U S a. 2011;108(10):4194-4199. doi:10.1073/pnas.1100976108
Alam P, Bousset L, Melki R, Otzen DE. α-Synuclein oligomers and fibrils: a spectrum of species, a spectrum of toxicities. J Neurochem. 2019;150(5):522-534. doi:10.1111/jnc.14808
Prusiner SB, Woerman AL, Mordes DA, et al. Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proc Natl Acad Sci U S a. 2015;112(38):E5308-E5317. doi:10.1073/pnas.1514475112
Shahnawaz M, Mukherjee A, Pritzkow S, et al. Discriminating α-synuclein strains in Parkinson's disease and multiple system atrophy. Nature. 2020;578(7794):273-277. doi:10.1038/s41586-020-1984-7
Schweighauser M, Shi Y, Tarutani A, et al. Structures of α-synuclein filaments from multiple system atrophy. Nature. 2020;585(7825):464-469. doi:10.1038/s41586-020-2317-6
Sekiya H, Kowa H, Koga H, et al. Wide distribution of alpha-synuclein oligomers in multiple system atrophy brain detected by proximity ligation. Acta Neuropathol. 2019;137(3):455-466. doi:10.1007/s00401-019-01961-w
Papp MI, Kahn JE, Lantos PL. Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy-Drager syndrome). J Neurol Sci. 1989;94(1-3):79-100. doi:10.1016/0022-510X(89)90219-0
Papp MI, Lantos PL. Accumulation of tubular structures in oligodendroglial and neuronal cells as the basic alteration in multiple system atrophy. J Neurol Sci. 1992;107(2):172-182. doi:10.1016/0022-510X(92)90286-T
Ozawa T, Paviour D, Quinn NP, et al. The spectrum of pathological involvement of the striatonigral and olivopontocerebellar systems in multiple system atrophy: clinicopathological correlations. Brain. 2004;127(12):2657-2571. doi:10.1093/brain/awh303
Cykowski MD, Coon EA, Powell SZ, et al. Expanding the spectrum of neuronal pathology in multiple system atrophy. Brain. 2015;138(8):2293-2309. doi:10.1093/brain/awv114
Koga S, Aoki N, Uitti RJ, et al. When DLB, PD, and PSP masquerade as MSA: an autopsy study of 134 patients. Neurology. 2015;85(5):404-412. doi:10.1212/WNL.0000000000001807
Koga S, Parks A, Uitti RJ, et al. Profile of cognitive impairment and underlying pathology in multiple system atrophy. Mov Disord. 2017;32(3):405-413. doi:10.1002/mds.26874
Miki Y, Foti SC, Asi YT, et al. Improving diagnostic accuracy of multiple system atrophy: a clinicopathological study. Brain. 2019;142(9):2813-2827. doi:10.1093/brain/awz189
Miki Y, Foti SC, Hansen D, et al. Hippocampal α-synuclein pathology correlates with memory impairment in multiple system atrophy. Brain. 2020;143(6):1798-1810. doi:10.1093/brain/awaa126
Miki Y, Tsushima E, Foti SC, et al. Identification of multiple system atrophy mimicking Parkinson's disease or progressive supranuclear palsy. Brain. 2021;144(4):1138-1151. doi:10.1093/brain/awab017
Asi YT, Ling H, Ahmed Z, Lees AJ, Revesz T, Holton JL. Neuropathological features of multiple system atrophy with cognitive impairment. Mov Disord. 2014;29(7):884-888. doi:10.1002/mds.25887
Tanji K, Miki Y, Mori F, et al. A mouse model of adult-onset multiple system atrophy. Neurobiol Dis. 2019;127:339-349. doi:10.1016/j.nbd.2019.03.020
Roberts RF, Wade-Martins R, Alegre-Abarrategui J. Direct visualization of alpha-synuclein oligomers reveals previously undetected pathology in Parkinson's disease brain. Brain. 2015;138(6):1642-1657. doi:10.1093/brain/awv040
Murai T, Okuda S, Tanaka T, Ohta H. Characteristics of object location memory in mice: behavioral and pharmacological studies. Physiol Behav. 2007;90(1):116-124. doi:10.1016/j.physbeh.2006.09.013
Wiera G, Mozrzymas JW. Extracellular proteolysis in structural and functional plasticity of mossy fiber synapses in hippocampus. Front Cell Neurosci. 2015;9:427. doi:10.3389/fncel.2015.00427
Dingledine R, Borges K, Bowie D, Traynelis SF. The glutamate receptor ion channels. Pharmacol Rev. 1999;51:7-61.
Klausberger T, Marton LF, O'Neill J, et al. Complementary roles of cholecystokinin- and parvalbumin-expressing GABAergic neurons in hippocampal network oscillations. J Neurosci. 2005;25(42):9782-9793. doi:10.1523/JNEUROSCI.3269-05.2005
Wiedenmann B, Franke WW. Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38,000 characteristic of presynaptic vesicles. Cell. 1985;41(3):1017-1028. doi:10.1016/S0092-8674(85)80082-9
Nishijima H, Arai A, Kimura T, et al. Drebrin immunoreactivity in the striatum of a rat model of levodopa-induced dyskinesia. Neuropathology. 2013;33(4):391-396. doi:10.1111/neup.12009
Kumar ST, Jagannath S, Francois C, Vanderstichele H, Stoops E, Lashuel HA. How specific are the conformation-specific α-synuclein antibodies? Characterization and validation of 16 α-synuclein conformation-specific antibodies using well-characterized preparations of α-synuclein monomers, fibrils and oligomers with distinct structures and morphology. Neurobiol Dis. 2020;146:105086. doi:10.1016/j.nbd.2020.105086
Giese KP, Fedorov NB, Filipkowski RK, Silva AJ. Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science. 1998;279(5352):870-873. doi:10.1126/science.279.5352.870
Lee HK, Barbarosie M, Kameyama K, Bear MF, Huganir RL. Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature. 2000;405(6789):955-959. doi:10.1038/35016089
Uchihara T, Giasson BI. Propagation of alpha-synuclein pathology: hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies. Acta Neuropathol. 2016;131(1):49-73. doi:10.1007/s00401-015-1485-1
Miller DW, Johnson JM, Solano SM, Hollingsworth ZR, Standaert DG, Young AB. Absence of α-synuclein mRNA expression in normal and multiple system atrophy oligodendroglia. J Neural Transm. 2005;112(12):1613-1624. doi:10.1007/s00702-005-0378-1
Ozawa T, Okuizumi K, Ikeuchi T, Wakabayashi K, Takahashi H, Tsuji S. Analysis of the expression level of α-synuclein mRNA using postmortem brain samples from pathologically confirmed cases of multiple system atrophy. Acta Neuropathol. 2001;102(2):188-190. doi:10.1007/s004010100367
Asi YT, Simpson JE, Heath PR, et al. Alpha-synuclein mRNA expression in oligodendrocytes in MSA. Glia. 2014;62(6):964-970. doi:10.1002/glia.22653
Richter-Landsberg C, Gorath M, Trojanowski JQ, Lee VM. α-Synuclein is developmentally expressed in cultured rat brain oligodendrocytes. J Neurosci Res. 2000;62(1):9-14. doi:10.1002/1097-4547(20001001)62:1<9::AID-JNR2>3.0.CO;2-U
Djelloul M, Holmqvist S, Boza-Serrano A, et al. Alpha-synuclein expression in the oligodendrocyte lineage: an in vitro and in vivo study using rodent and human models. Stem Cell Reports. 2015;5(2):174-184. doi:10.1016/j.stemcr.2015.07.002
Kaji S, Maki T, Kinoshita H, et al. Pathological endogenous α-synuclein accumulation in oligodendrocyte precursor cells potentially induces inclusions in multiple system atrophy. Stem Cell Reports. 2018;10(2):356-365. doi:10.1016/j.stemcr.2017.12.001
Wenning GK, Quinn N, Magalhaes M, Mathias C, Daniel SE. “Minimal change” multiple system atrophy. Mov Disord. 1994;9(2):161-166. doi:10.1002/mds.870090206
Kon T, Mori F, Tanji K, Miki Y, Wakabayashi K. An autopsy case of preclinical multiple system atrophy (MSA-C). Neuropathology. 2013;33(6):667-672. doi:10.1111/neup.12037
Baker KG, Huang Y, McCann H, Gai WP, Jensen PH, Halliday GM. P25α immunoreactive but α-synuclein immunonegative neuronal inclusions in multiple system atrophy. Acta Neuropathol. 2006;111(2):193-195. doi:10.1007/s00401-005-0008-x
Ando T, Riku Y, Akagi A, et al. Multiple system atrophy variant with severe hippocampal pathology. Brain Pathol. 2022;32(1):e13002. doi:10.1111/bpa.13002
Aoki N, Boyer PJ, Lund C, et al. Atypical multiple system atrophy is a new subtype of frontotemporal lobar degeneration: frontotemporal lobar degeneration associated with α-synuclein. Acta Neuropathol. 2015;130(1):93-105. doi:10.1007/s00401-015-1442-z
Piao YS, Hayashi S, Hasegawa M, et al. Co-localization of α-synuclein and phosphorylated tau in neuronal and glial cytoplasmic inclusions in a patient with multiple system atrophy of long duration. Acta Neuropathol. 2001;101(3):285-293. doi:10.1007/s004010000292

Auteurs

Yasuo Miki (Y)

Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.

Kunikazu Tanji (K)

Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.

Kana Shinnai (K)

Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.

Makoto T Tanaka (MT)

Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
Faculty of Science and Engineering, Graduate School of Science and Engineering, Iwate University, Morioka, Japan.

Firat Altay (F)

Laboratory of Molecular and Chemical Biology of Neurodegeneration, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

Sandrine C Foti (SC)

Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.

Catherine Strand (C)

Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.

Takanori Sasaki (T)

Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.

Tomoya Kon (T)

Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.

Shuji Shimoyama (S)

Department of Neurophysiology, Institute of Brain Science, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan.

Tomonori Furukawa (T)

Department of Neurophysiology, Institute of Brain Science, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan.

Haruo Nishijima (H)

Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.

Hiromi Yamazaki (H)

Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University, Hirosaki, Japan.
Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan.

Yasmine T Asi (YT)

Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.

Conceição Bettencourt (C)

Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.
Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK.

Zane Jaunmuktane (Z)

Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.
Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK.

Mari Tada (M)

Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan.

Fumiaki Mori (F)

Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.

Hiroki Mizukami (H)

Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.

Masahiko Tomiyama (M)

Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.

Hilal A Lashuel (HA)

Laboratory of Molecular and Chemical Biology of Neurodegeneration, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

Tammaryn Lashley (T)

Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.

Akiyoshi Kakita (A)

Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan.

Helen Ling (H)

Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.
Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, University College London, London, UK.

Andrew J Lees (AJ)

Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.
Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK.

Janice L Holton (JL)

Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.

Thomas T Warner (TT)

Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.
Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK.
Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, University College London, London, UK.

Koichi Wakabayashi (K)

Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH