Silicon reduces zinc absorption and triggers oxidative tolerance processes without impacting growth in young plants of hemp (Cannabis sativa L.).


Journal

Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769

Informations de publication

Date de publication:
Jan 2023
Historique:
received: 09 03 2022
accepted: 28 06 2022
pubmed: 31 7 2022
medline: 7 1 2023
entrez: 30 7 2022
Statut: ppublish

Résumé

Hemp (Cannabis sativa L.) is a promising crop for non-food agricultural production on soils contaminated by moderate doses of heavy metals, while silicon, as a beneficial element, is frequently reported to improve stressed plant behavior. Using a hydroponic system, plants of Cannabis sativa (cv. Santhica 27) were exposed for 1 week to 100 µM Zn in the presence or absence of 2 mM Si. Zinc accumulated in all plant organs but was mainly sequestered in the roots. Additional Si reduced Zn absorption but had no impact on Zn translocation. Zn accumulation had a slight negative impact on leaf number, stem length, and chlorophyll content, and additional Si did not mitigate these symptoms. Exogenous Si reduced the Zn-induced membrane lipid peroxidation (assessed by malondialdehyde quantification) and increased the total antioxidant activities estimated by the FRAP index. In the absence of Si, leaf phytochelatin and total glutathione were the highest in Zn-treated plants and Si significantly decreased their concentrations.

Identifiants

pubmed: 35907072
doi: 10.1007/s11356-022-21797-4
pii: 10.1007/s11356-022-21797-4
doi:

Substances chimiques

Zinc J41CSQ7QDS
Silicon Z4152N8IUI
Metals, Heavy 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

943-955

Subventions

Organisme : ADEME
ID : 1672C0044
Organisme : Fonds De La Recherche Scientifique - FNRS
ID : T.0147.21
Organisme : Fonds National de la Recherche Luxembourg
ID : 20/15045745

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Adrees M, Ali S, Rizwan M, Zia-ur-Rehman M, Ibrahim M, Abbas F, Farid M, Qayyum MF, Irshad MK (2015) Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotox Environ Saf 119:186–197
Ahmad R, Tehsin Z, Malik ST, Asad SA, Shahza M, Bila M, Shah MM, Khan SA (2016) Phytoremediation potential of hemp (Cannabis sativa L.): identification and characterization of heavy metals responsive genes. CLEAN–Soil Air Water 44:195–201
Ali H, Khan E, Anwar Sajad M (2013) Phytoremediation of heavy metals — concepts and applications. Chemosphere 91:869–881
Alloway BJ (2013) Bioavailability of elements in soil. Essentials of Medical Geology, revised. Springer, Dordrecht, pp 351–373
Andrejić G, Gajić G, Prica M, Dželetovic Ž, Rakić T (2018) Zinc accumulation, photosynthetic gas exchange, and chlorophyll a fluorescence in Zn-stressed Miscanthus x giganteus plants. Photosynthetica 56:1249–1258
Angelova V, Ivanova R, Delibaltova V, Ivanov K (2004) Bio-accumulation and distribution of heavy metals in fibre crops (flax, cotton and hemp). Ind Crops Prod 19:197–205
Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76
Berni R, Mandlik R, Hausman JF, Guerriero G (2021) Silicon-induced mitigatory effects in salt-stressed hemp leaves. Physiol Plant 171:476–482
Bokor B, Vaculík M, Slováková L, Masarovič D, Lux A (2014) Silicon does not always mitigate zinc toxicity in maize. Acta Physiol Plant 36:733–743
Bona E, Marsano F, Cavaletto M, Berta G (2007) Proteomic characterization of copper stress response in Cannabis sativa roots. Proteomics 7:1121–1130
Branda F, Malucelli G, Durante M, Piccolo A, Mazzei P, Costantini A, Silvestri B, Pennetta M, Bifulco A (2016) Silica treatments: a fire-retardant strategy or hemp fabric/epoxy composites. Polymers 8:313
Cambrollé J, Mancilla-Layton JM, Munoz-Vallès S, Figureuero-Luque E, Luque T, Figureuero-Luque ME (2013) Evaluation of Zn tolerance and accumulation potentiel of the coastal shrub Limoniastrum monopetalum (L.) Boiss. Environ Exp Bot 85:50–57
Cereser C, Guichard J, Drai J, Bannier E, Garcia I, Boget S, Parvaz P, Revol A (2001) Quantitation of reduced and total glutathione at the femtomole level by high-performance liquid chromatography with fluorescence detection: application to red blood cells and cultured fibroblasts. J Chrom b: Biomedical Sci Appl 752:123–132
Citterio S, Santagostino A, Fumagalli P, Prato N, Ranalli P, Sgorbati S (2003) Heavy metal tolerance and accumulation of Cd, Cr and Ni by Cannabis sativa L. Plant Soil 256:243–252
De Vos CR, Vonk MJ, Vooijs R, Schat H (1992) Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiol 98:853–858
Deleuran LC, Flengmark PK (2006) Yield potential of hemp (Cannabis sativa L.) cultivars in Denmark. J Ind Hemp 10:19–31
Doncheva S, Poschenrieder C, Stoyanova Z, Georgieva K, Velichkova M, Barceló J (2009) Silicon amelioration of manganese toxicity in Mn-sensitive and Mn-tolerant maize varieties. Environ Exp Bot 65:189–197
Dufey I, Gheysens S, Ingabire A, Lutts S, Bertin P (2014) Silicon application in cultivated rice (Oryza sativa L. and O. glaberrima Steud.) alleviates iron toxicity symptoms through the reduction in iron concentration in the leaf tissue. J Agron Crop Sci 200:132–142
Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J 2015:756120
Epstein E (1994) The anomaly of silicon in plant biology. Proc Nat Acad Sci USA 91:11–17
Etesami H, Jeong BR (2018) Silicon (Si): review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotox Environ Saf 147:881–896
Fan W, Guo Q, Liu CY, Liu X, Zhang M, Long D, Xiang Z, Zhao A (2018) Two mulberry phytochelatin synthase genes confer zinc/cadmium tolerance and accumulation in transgenic Arabidopsis and tobacco. Gene 645:95–104
Goodarzi A, Namdjoyan S, Soorki AA (2020) Effects of exogenous melatonin and glutathione on zinc toxicity in safflower (Carthamus tinctorius L.) seedlings. Ecotox Environ Saf 201:110853
Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: II. Role of electron transfer. Arch Biochem Biophys 125:850–857
Huang S, Ma JF (2020) Silicon suppresses zinc uptake through down-regulating zinc transporter gene in rice. Phyiol Plant 170:580–591
Imtiaz M, Rizwan MS, Mushtag MA, Ashraf M, Shahazad SM, Yousaf B, Saeed DA, Rizwan M, Nawaz MA, Mehmood S, Tu S (2016) Silicon occurrence, uptake, transport and mechanisms of heavy metals, minerals and salinity enhanced tolerance in plants with future prospects: a review. J Env Manag 183:521–529
Jiang Y, Bourebrab MA, Sid N, Taylor A, Collet F, Pretot S, Hussain A, Ansell M, Lawrence M (2018) Improvement of water resistance of hemp woody substrates through deposition of functionalized silica hydrophobic coating while retaining excellent moisture buffering properties. Sus Chem Eng 6:10151–10161
Kanwar VS, Sharma A, Srivastav AL, Ranni L (2020) Phytoremediation of toxic metals present in soil and water environment: a critical review. Environ Sci Poll Res 27:44835–44860
Khan AG, Kuek C, Chaudhry TM, Khoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41:197–207
Kim YH, Khan AL, Waqas M, Lee IJ (2017) Silicon regulates antioxidant activities of crop plants under abiotic-induced oxidative stress: a review. Front Plant Sci 8:510
Kröger N, Poulsen N (2008) Diatoms – from cell wall biogenesis to nanotechnology. Ann Rev Genet 42:83–107
Kumar S, Singh R, Kumar V, Rani A, Jain R (2017) Cannabis sativa: A plant suitable for phytoremediation and bioenergy production. Phytoremediation potential of bioenergy plants. Springer, Singapore, pp 269–285
Küpper H, Küpper F, Spiller M (1998) In situ detection of heavy metal substituted chlorophylls in water plants. Photosynth Res 58:123–133
Kurade MMB, Ha YH, Xiong JQ, Govindar SP, Jang M, Jeon BH (2021) Phytoremediation as a green biotechnology tool for emerging environmental pollution: a step towards sustainable rehabilitation of the environment. Chem Eng J 415:129040
Lefèvre I, Vogel-Mikuš K, Arčon I, Lutts S (2016) How do roots of the metal-resistant perennial bush Zygophyllum fabago cope with cadmium and zinc toxicities? Plant Soil 404:193–207
Lichtenthaler HK (1987) Chlorophylls and carotenoids - pigments of photosynthetic biomembranes. Meth Enzymol 148:350–382
Linger P, Müssigg J, Fischer H, Kobert J (2002) Industrial hemp (Cannabis sativa L.) growing on heavy metal contaminated soil: fibre quality and phytoremediation potential. Ind Crops Prod 16:33–42
Linger P, Ostwald A, Haensler J (2005) Cannabis sativa L. growing on heavy metal contaminated soil: growth, cadmium uptake and photosynthesis. Biol Plant 49:567–576
Liu L, Li W, Song W, Guo M (2018) Remediation techniques for heavy metal-contaminated soils: principles and applicability. Sci Total Enviro 633:206–219
Loiacono S, Morin-Crini N, Martel B, Chanet G, Bradu C, Torri G, Crini G (2018) Complexation du zinc, du cuivre et du manganese par du chanvre: efficacité chimique et impact écotoxicologique. Environ Risques Santé 17:240–252
Löser C, Zehnsdorf A, Fussy A, Stärk HJ (2002) Conditioning of heavy metal-polluted river sediment by Cannabis sativa L. Intern J Phytorem 4:27–45
Luo Y, Zheng Z, Wu P, Wu Y (2022) Effect of different direct revegetation strategies in the mobility of heavy metals in artificial smelting waste slag: implications for phytoremediation. Chemosphere 286:131678
Luyckx M, Berni R, Cai G, Lutts S, Guerriero G (2019) Impact of heavy metals on non-food herbaceous crops and prophylactic role of Si. Plant Metallomics and Functional Omics. Springer, Cham, pp 303–321
Luyckx M, Hausman JF, Blanquet M, Guerriero G, Lutts S (2021) Silicon reduces cadmium absorption and increases root-to-shoot translocation without impacting growth in young plants o hemp (Cannabis sativa L.) on a short- term basis. Environ Sci Poll Res 28:37963–37977
Luyckx M, Hausman JF, Isenborgh A, Guerriero G, Lutts S (2021) Impact of cadmium and zinc on proteins and cell wall-related gene expression in young stems of hemp (Cannabis sativa L.) and influence of exogenous silicon. Environ Exp Bot 183:104363
Luyckx M, Hausman JF, Sergeant K, Guerriero G, Lutts S (2021) Molecular and biochemical insights into early responses of hemp to Cd and Zn exposure and the potential effect of Si on stress response. Front Plant Sc 12:711853
Ma J, Cai J, He C, Zhang W, Wang L (2015) A hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice (Oryza sativa) cells. New Phytol 206:1063–1074
Masarovic D, Slováková L, Bokor B, Budjoš M, Lux A (2012) Effect of silicon application in Sorghum bicolor exposed to toxic concentration of zinc. Biologia 67:706–717
Maxwell K, Johnson GN (2000) Chlorophyll fluorescence – a practical guide. J Exp Bot 51:659–668
Muthusaravanan S, Sivarajasekar N, Vivek JS, Paramasivan T, Naushad M, Prakashmaran J, Gayathri V, Al-Duaij OK (2018) Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environ Chem Lett 16:1339–1359
Pejic B, Vukcevic M, Kostic M, Skundric P (2009) Biosorption of heavy metal ions from aqueous solutions by short hemp fibers: effect of chemical composition. J Hazard Mat 164:146–153
Piotrowska-Cyplik A, Czarnecki Z (2003) Phytoextraction of heavy metals by hemp during anaerobic sewage sludge management in the non-industrial sites. Pol J Environ Stud 12:779–784
Schäfer HJ, Greiner S, Rausch T, Haag-Kerwer A (1997) In seedlings of the heavy metal accumulator Brassica juncea, Cu
Schluttenhofer C, Yuan L (2017) Challenges towards revitalizing hemp: a multifaced crop. Trends Plant Sci 22:917–929
Shahid M, Khalid S, Abbas G, Niazi NK, Murtaza B, Rashid MI, Bibi I (2019) Redox mechanisms and plant tolerance under heavy metal stress: genes and regulatory networks. Plant Metallomics and Functional Omics. Springer, Cham, pp 71–105
Shi GR, Cai QS, Liu QQ, Wu L (2009) Salicylic acid-mediated alleviation of cadmium toxicity in hemp plants in relation to cadmium uptake, photosynthesis, and antioxidant enzymes. Acta Physiol Plant 3:969–977
Shi G, Liu C, Cui M, Ma Y, Cai Q (2012) Cadmium tolerance and bioaccumulation of 18 hemp accessions. Appl Biochem Biotechnol 168:163–173
Sun W, Liu S, Zhang X, Zhu H (2022) Performance of hyperspectral data in predicting and mapping zinc concentration in soil. Sci Total Environ 824:153766
Tennstedt P, Peisker D, Böttcher C, Trampczynska A, Clemens S (2009) Phytochelatin synthesis is essential for the detoxification of excess zinc and contributes significantly to the accumulation of zinc. Plant Physiol 149:938–948
Tóth G, Hermann T, Da Silva MR, Montanarella L (2016) Heavy metals in agricultural soils of the European Union with implications for food safety. Environ Intern 88:299–309
Vareda JP, Valente AJM, Durães L (2019) Assessment of heavy meal pollution from anthropogenic activities and remediation strategies: a review. J Environ Manag 246:101–1018
Vukcevic M, Pejic B, Kaliajadis A, Pajic-Lijakovic I, Kostic M, Lausevic Z, Lausevic M (2014) Carbon material from waste short hemp fibers as a sorbent for heavy metal ions – mathematical modeling of sorbent structure and ions transport. Chem Eng J 233:284–292
Vukcevic M, Pejic B, Lausevic M, Pajic-Lijaovic I, Kostic M (2014) Influence of chemically modified short hemp fiber structure on biosorption process of Zn
Wu Y, Trejo HX, Chen G, Li S (2021) Phytoremediation of contaminants of emerging concern from soil with industrial hemp (Cannabis sativa L.): a review. Environ Dev Sustain 23:14405–14435
Yang R, Berthold AC, McCurdy CR, da Silva BS, Brym ZT, Freeman JH (2020) Development of cannabinoids in flowers of industrial hemp (Cannabis sativa L.): a pilot study. J Agr Food Chem 68:6058–6064
Zajaczkowska A, Korzeniowska J, Sienkiewicz-Choleva U (2020) Effect of soil and foliar silicon application on the reduction of zinc toxicity in wheat. Agriculture 10:0522
Zhao J, Xu Y, Wang W, Griffin J, Roozeboom K, Wang D (2020) Bioconversion of industrial hemp biomass for bioethanol production: a review. Fuel 281:118725
Zlobin IE (2021) Current understanding of plant zinc homeostasis regulation mechanisms. Plant Physiol Biochem 162:327–335

Auteurs

Marie Luyckx (M)

Groupe de Recherche en Physiologie végétale, Earth and Life Institute - Agronomy (ELIA), Université Catholique de Louvain, 5 (Bte13) Place Croix du Sud, 1348, Louvain-la-Neuve, Belgium. marie.luyckx@uclouvain.be.

Jean-François Hausman (JF)

Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, 4362, Esch/Alzette, Luxembourg.

Gea Guerriero (G)

Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, 4362, Esch/Alzette, Luxembourg.

Stanley Lutts (S)

Groupe de Recherche en Physiologie végétale, Earth and Life Institute - Agronomy (ELIA), Université Catholique de Louvain, 5 (Bte13) Place Croix du Sud, 1348, Louvain-la-Neuve, Belgium.

Articles similaires

Cannabis Use During Early Pregnancy Following Recreational Cannabis Legalization.

Kelly C Young-Wolff, Natalie E Slama, Lyndsay A Avalos et al.
1.00
Humans Female Pregnancy California Adult
Psoriasis Humans Magnesium Zinc Trace Elements
Nigeria Environmental Monitoring Solid Waste Waste Disposal Facilities Refuse Disposal
1.00
Oryza Agricultural Irrigation Potassium Sodium Soil

Classifications MeSH