Genotype-Specific ECG-Based Risk Stratification Approaches in Patients With Long-QT Syndrome.
QTc
electrocardiogram
genetic arrhythmia disorders
long-QT syndrome
risk stratification
Journal
Frontiers in cardiovascular medicine
ISSN: 2297-055X
Titre abrégé: Front Cardiovasc Med
Pays: Switzerland
ID NLM: 101653388
Informations de publication
Date de publication:
2022
2022
Historique:
received:
08
04
2022
accepted:
13
06
2022
entrez:
1
8
2022
pubmed:
2
8
2022
medline:
2
8
2022
Statut:
epublish
Résumé
Congenital long-QT syndrome (LQTS) is a major cause of sudden cardiac death (SCD) in young individuals, calling for sophisticated risk assessment. Risk stratification, however, is challenging as the individual arrhythmic risk varies pronouncedly, even in individuals carrying the same variant. In this study, we aimed to assess the association of different electrical parameters with the genotype and the symptoms in patients with LQTS. In addition to the heart-rate corrected QT interval (QTc), markers for regional electrical heterogeneity, such as QT dispersion (QT QTc at rest was significantly longer in symptomatic than asymptomatic patients with LQT2 (493.4 ms ± 46.5 ms vs. 419.5 ms ± 28.6 ms, Different electrical parameters can distinguish between symptomatic and asymptomatic patients in different genetic forms of LQTS. While the classical "QTc at rest" was only associated with symptoms in LQT2, post-exercise QTc helped distinguish between symptomatic and asymptomatic patients with LQT1. Enhanced regional electrical heterogeneity was only associated with symptoms in LQT1, but not in LQT2. Our findings indicate that genotype-specific risk stratification approaches based on electrical parameters could help to optimize risk assessment in LQTS.
Sections du résumé
Background
UNASSIGNED
Congenital long-QT syndrome (LQTS) is a major cause of sudden cardiac death (SCD) in young individuals, calling for sophisticated risk assessment. Risk stratification, however, is challenging as the individual arrhythmic risk varies pronouncedly, even in individuals carrying the same variant.
Materials and Methods
UNASSIGNED
In this study, we aimed to assess the association of different electrical parameters with the genotype and the symptoms in patients with LQTS. In addition to the heart-rate corrected QT interval (QTc), markers for regional electrical heterogeneity, such as QT dispersion (QT
Results
UNASSIGNED
QTc at rest was significantly longer in symptomatic than asymptomatic patients with LQT2 (493.4 ms ± 46.5 ms vs. 419.5 ms ± 28.6 ms,
Conclusion
UNASSIGNED
Different electrical parameters can distinguish between symptomatic and asymptomatic patients in different genetic forms of LQTS. While the classical "QTc at rest" was only associated with symptoms in LQT2, post-exercise QTc helped distinguish between symptomatic and asymptomatic patients with LQT1. Enhanced regional electrical heterogeneity was only associated with symptoms in LQT1, but not in LQT2. Our findings indicate that genotype-specific risk stratification approaches based on electrical parameters could help to optimize risk assessment in LQTS.
Identifiants
pubmed: 35911527
doi: 10.3389/fcvm.2022.916036
pmc: PMC9329832
doi:
Types de publication
Journal Article
Langues
eng
Pagination
916036Commentaires et corrections
Type : ErratumIn
Informations de copyright
Copyright © 2022 Rieder, Kreifels, Stuplich, Ziupa, Servatius, Nicolai, Castiglione, Zweier, Asatryan and Odening.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
J Am Coll Cardiol. 1999 Sep;34(3):823-9
pubmed: 10483966
N Engl J Med. 1992 Sep 17;327(12):846-52
pubmed: 1508244
Circulation. 2009 Nov 3;120(18):1761-7
pubmed: 19841298
J Am Coll Cardiol. 2014 Mar 4;63(8):819-27
pubmed: 24184248
N Engl J Med. 1998 Oct 1;339(14):960-5
pubmed: 9753711
Circulation. 2002 Nov 5;106(19):2473-8
pubmed: 12417545
J Am Coll Cardiol. 2011 Jan 4;57(1):51-9
pubmed: 21185501
Heart Rhythm. 2010 Jul;7(7):906-11
pubmed: 20226272
Eur Heart J. 2015 Jan 14;36(3):179-86
pubmed: 25205533
Nat Rev Dis Primers. 2020 Jul 16;6(1):58
pubmed: 32678103
Clin Sci (Lond). 2003 Dec;105(6):671-6
pubmed: 12857349
Circulation. 2003 Feb 18;107(6):838-44
pubmed: 12591753
Eur Heart J. 2018 Nov 21;39(44):3925-3931
pubmed: 30215713
J Electrocardiol. 2008 Nov-Dec;41(6):567-74
pubmed: 18790499
Cardiologia. 1997 Oct;42(10):1071-6
pubmed: 9534283
Am Heart J. 1973 Apr;85(4):546-62
pubmed: 4632004
Cardiovasc Res. 1978 Jan;12(1):13-27
pubmed: 76514
Cardiovasc Res. 2002 Feb 15;53(3):740-51
pubmed: 11861044
Heart Rhythm. 2008 Jul;5(7):1015-8
pubmed: 18598957
Nature. 1995 Aug 24;376(6542):683-5
pubmed: 7651517
Cell. 1995 Mar 10;80(5):805-11
pubmed: 7889574
Circulation. 1986 Dec;74(6):1334-45
pubmed: 3779919
J Am Coll Cardiol. 2020 Dec 15;76(24):2834-2843
pubmed: 33303072
Acta Cardiol Sin. 2022 Mar;38(2):124-133
pubmed: 35273433
Int J Cardiol Heart Vasc. 2020 Sep 19;30:100636
pubmed: 32995475
Circ Res. 2010 Mar 19;106(5):815-7
pubmed: 20299671
Front Physiol. 2022 Feb 07;12:780448
pubmed: 35197859
Circulation. 2020 Feb 11;141(6):418-428
pubmed: 31983240
Heart Rhythm. 2006 Sep;3(9):1003-7
pubmed: 16945790
Circulation. 2001 Jan 2;103(1):89-95
pubmed: 11136691
Circulation. 2011 Nov 15;124(20):2187-94
pubmed: 22042885
J Am Coll Cardiol. 1999 Feb;33(2):327-32
pubmed: 9973011
J Am Heart Assoc. 2021 May 4;10(9):e021396
pubmed: 33880937
Circulation. 1993 Aug;88(2):782-4
pubmed: 8339437
Circ Arrhythm Electrophysiol. 2012 Aug 1;5(4):868-77
pubmed: 22895603
J Cardiovasc Electrophysiol. 2010 Nov;21(11):1242-6
pubmed: 20455992
Eur Heart J. 2015 Nov 1;36(41):2793-2867
pubmed: 26320108
Br Heart J. 1990 Jun;63(6):342-4
pubmed: 2375895
Pacing Clin Electrophysiol. 1998 Jan;21(1 Pt 2):172-5
pubmed: 9474667
Genet Med. 2015 May;17(5):405-24
pubmed: 25741868
Heart. 2022 Mar;108(5):332-338
pubmed: 34039680
Med Sci Monit. 2007 Apr;13(4):CR165-71
pubmed: 17392645
J Cardiovasc Electrophysiol. 2001 Apr;12(4):455-61
pubmed: 11332568
N Engl J Med. 2003 May 8;348(19):1866-74
pubmed: 12736279
Am J Physiol Heart Circ Physiol. 2007 Oct;293(4):H2024-38
pubmed: 17586620
Eur Heart J. 2008 Jan;29(2):185-90
pubmed: 18156612
Ital Heart J. 2000 May;1(5):323-8
pubmed: 10832806
Am J Cardiol. 1988 Jan 1;61(1):83-7
pubmed: 3337022
Circulation. 1998 Nov 3;98(18):1928-36
pubmed: 9799215
J Am Coll Cardiol. 2001 Mar 1;37(3):911-9
pubmed: 11693770
Europace. 2001 Jan;3(1):16-27
pubmed: 11271945
Heart Rhythm. 2017 Sep;14(9):1388-1397
pubmed: 28479515
Acta Pharmacol Sin. 2004 Feb;25(2):137-45
pubmed: 14769199
J Am Heart Assoc. 2016 Jun 17;5(6):
pubmed: 27317349
Circulation. 2014 Nov 25;130(22):1936-1943
pubmed: 25294783
Ann Noninvasive Electrocardiol. 2021 Jan;26(1):e12804
pubmed: 33070409
J Intern Med. 2006 Jan;259(1):39-47
pubmed: 16336512
Lab Anim Res. 2021 Sep 8;37(1):25
pubmed: 34496976
Cardiovasc Res. 1999 Jul;43(1):135-47
pubmed: 10536698
Heart Rhythm. 2009 Sep;6(9):1297-303
pubmed: 19716085
Am J Cardiol. 2009 May 1;103(9):1244-8
pubmed: 19406266
Circulation. 1994 Apr;89(4):1681-9
pubmed: 7908611
Circulation. 2004 Oct 19;110(16):2453-9
pubmed: 15477402
Circulation. 1999 Feb 2;99(4):529-33
pubmed: 9927399
Prog Biophys Mol Biol. 2016 Jan;120(1-3):255-69
pubmed: 26718598
Am J Cardiol. 1999 Oct 15;84(8):876-9
pubmed: 10532503