Precise prediction of multiple anticancer drug efficacy using multi target regression and support vector regression analysis.

Computational models Multi target drug efficacy prediction Oral squamous cell carcinoma Precision medicine Support vector regression

Journal

Computer methods and programs in biomedicine
ISSN: 1872-7565
Titre abrégé: Comput Methods Programs Biomed
Pays: Ireland
ID NLM: 8506513

Informations de publication

Date de publication:
Sep 2022
Historique:
received: 20 06 2022
revised: 08 07 2022
accepted: 13 07 2022
pubmed: 2 8 2022
medline: 18 8 2022
entrez: 1 8 2022
Statut: ppublish

Résumé

The prediction of multiple drug efficacies using machine learning prediction techniques based on clinical and molecular attributes of tumors is a new approach in the field of precision medicine of oncology. The selection of suitable and effective therapeutic drugs among the potential drugs is performed computationally considering the tumor features. In this study, we developed and validated machine learning models to predict the efficacy of five anti-cancer drugs according to the clinical and molecular attributes of 30 oral squamous cell carcinoma (OSCC) cohorts. This sounds a bit odd - consider: Ranking of the drugs was achieved using their apoptotic priming. We developed multiple drug efficacy prediction models based on three types of tumor characteristics by applying machine learning methods, including multi-target regression (MTR) and support vector regression (SVR). The prediction accuracy of existing machine learning methods was enhanced by introducing novel pre-processing techniques to develop Enhanced MTR (E_MTR), Enhanced Log-based MTR (EL_MTR), Enhanced Multi-target SVR (EM_SVR), and Enhanced Log-based Multi-target SVR (ELM_SVR). As a unique capability, ELM_SVR and EL_MTR rank the drugs based on their predicted efficacy. All the drug efficacy prediction models were built using OSCC real samples and theoretical samples. The best model was selected was based on dataset size and evaluation metrics, such as error terms, residuals and parameter tuning, and cross-validated (CV) using 30 real samples and 340 theoretical samples. When 30 real tumor samples were used for the train-test and CV methods, MTR models predicted the efficacy with less error than SVR models. Comparatively, using 340 theoretical samples for the train-test and CV methods, though MTR improved the performance, SVR predicted the efficacy with zero error. We found that, for small samples, the proposed MTR provided a 0.01 difference between actual apoptotic priming and predicted priming of five drugs. For large samples, the predicted values by the proposed SVR had a difference of 0.00001. The error terms (Actual vs. Predicted) also reveal that the enhanced log model is suitable when MTR is applied. Meanwhile, the enhanced model is suitable for SVR learning for multiple drug efficacy prediction. It was found that the predicted ranks of the drugs based on the multi-targeted efficacy prediction exactly match the actual rankings. We developed efficient statistical and machine learning models using MTR and SVR analysis for anticancer drug efficacy, which will be useful in the field of precision medicine to choose the most suitable drugs in personalized manner. The performance results of the proposed enhanced ranking techniques are described as follows: i) EL_MTR is the best to predict multiple anticancer drug efficacies and improve the accuracy of ranking drugs, irrespective of sample size; and ii) ELM_SVR performs better than other MTR models with a large sample size and precise ranking process.

Sections du résumé

BACKGROUND AND OBJECTIVES OBJECTIVE
The prediction of multiple drug efficacies using machine learning prediction techniques based on clinical and molecular attributes of tumors is a new approach in the field of precision medicine of oncology. The selection of suitable and effective therapeutic drugs among the potential drugs is performed computationally considering the tumor features. In this study, we developed and validated machine learning models to predict the efficacy of five anti-cancer drugs according to the clinical and molecular attributes of 30 oral squamous cell carcinoma (OSCC) cohorts. This sounds a bit odd - consider: Ranking of the drugs was achieved using their apoptotic priming.
METHODS METHODS
We developed multiple drug efficacy prediction models based on three types of tumor characteristics by applying machine learning methods, including multi-target regression (MTR) and support vector regression (SVR). The prediction accuracy of existing machine learning methods was enhanced by introducing novel pre-processing techniques to develop Enhanced MTR (E_MTR), Enhanced Log-based MTR (EL_MTR), Enhanced Multi-target SVR (EM_SVR), and Enhanced Log-based Multi-target SVR (ELM_SVR). As a unique capability, ELM_SVR and EL_MTR rank the drugs based on their predicted efficacy. All the drug efficacy prediction models were built using OSCC real samples and theoretical samples. The best model was selected was based on dataset size and evaluation metrics, such as error terms, residuals and parameter tuning, and cross-validated (CV) using 30 real samples and 340 theoretical samples.
RESULTS RESULTS
When 30 real tumor samples were used for the train-test and CV methods, MTR models predicted the efficacy with less error than SVR models. Comparatively, using 340 theoretical samples for the train-test and CV methods, though MTR improved the performance, SVR predicted the efficacy with zero error. We found that, for small samples, the proposed MTR provided a 0.01 difference between actual apoptotic priming and predicted priming of five drugs. For large samples, the predicted values by the proposed SVR had a difference of 0.00001. The error terms (Actual vs. Predicted) also reveal that the enhanced log model is suitable when MTR is applied. Meanwhile, the enhanced model is suitable for SVR learning for multiple drug efficacy prediction. It was found that the predicted ranks of the drugs based on the multi-targeted efficacy prediction exactly match the actual rankings.
CONCLUSION CONCLUSIONS
We developed efficient statistical and machine learning models using MTR and SVR analysis for anticancer drug efficacy, which will be useful in the field of precision medicine to choose the most suitable drugs in personalized manner. The performance results of the proposed enhanced ranking techniques are described as follows: i) EL_MTR is the best to predict multiple anticancer drug efficacies and improve the accuracy of ranking drugs, irrespective of sample size; and ii) ELM_SVR performs better than other MTR models with a large sample size and precise ranking process.

Identifiants

pubmed: 35914385
pii: S0169-2607(22)00409-6
doi: 10.1016/j.cmpb.2022.107027
pii:
doi:

Substances chimiques

Antineoplastic Agents 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

107027

Informations de copyright

Copyright © 2022. Published by Elsevier B.V.

Déclaration de conflit d'intérêts

Declaration of Competing Interest There is no conflict of Interest.

Auteurs

G R Brindha (GR)

SASTRA Deemed to be University, Thanjavur, Tamilnadu 613401, India.

B S Rishiikeshwer (BS)

SASTRA Deemed to be University, Thanjavur, Tamilnadu 613401, India.

B Santhi (B)

SASTRA Deemed to be University, Thanjavur, Tamilnadu 613401, India. Electronic address: shanthi@cse.sastra.ac.in.

K Nakendraprasath (K)

SASTRA Deemed to be University, Thanjavur, Tamilnadu 613401, India.

R Manikandan (R)

SASTRA Deemed to be University, Thanjavur, Tamilnadu 613401, India.

Amir H Gandomi (AH)

Data Science Institute, Faculty of Engineering and Information Systems, University of Technology Sydney, Ultimo, NSW 2007, Australia. Electronic address: gandomi@uts.edu.au.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH